首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设φ1(x),φ2(x)为一阶非齐次线性微分方程y’+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为( ).
设φ1(x),φ2(x)为一阶非齐次线性微分方程y’+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为( ).
admin
2017-12-31
47
问题
设φ
1
(x),φ
2
(x)为一阶非齐次线性微分方程y’+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为( ).
选项
A、C[φ
1
(x)+φ
2
(x)]
B、C[φ
1
(x)-φ
2
(x)]
C、C[φ
1
(x)-φ
2
(x)]+φ
2
(x)
D、[φ
1
(x)-φ
2
(x)]+Cφ
2
(x)
答案
C
解析
因为φ
1
(x),φ
2
(x)为方程y’+P(x)y=Q(x)的两个线性无关解,所以φ
1
(x)-φ
2
(x)为方程y’+P(x)y=0的一个解,于是方程y’+P(x)y=Q(x)的通解为C[φ
1
(x)-φ
2
(x)]+φ
2
(x),选(C).
转载请注明原文地址:https://kaotiyun.com/show/xXX4777K
0
考研数学三
相关试题推荐
已知B是n阶矩阵,满足B2=E(此时矩阵B称为对合矩阵).求B的特征值的取值范围.
已知线性方程方程组有解时,求出方程组的导出组的基础解系;
已知3维向量组α1,α2,α3线性无关,则向量组α1一α2,α2一kα3,α3一α1也线性无关的充要条件是k________.
设f(x,y)在点(0,0)处连续,且其中a,b,c为常数.(1)讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);(2)讨论f(x,y)在点(0,0)处是否取极值,说明理由.
设矩阵且秩(A)=3,则k_______.
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t) (1)问当t为何值时,向量组α1,α2,α3线性无关? (2)问当t为何值时,向量组α1,α2,α3线性相关? (3)当向量组α1,α2,α3线性相关时,将α3表示为α1和α2
设矩阵求a,b的值;
设n阶矩阵求A的特征值和特征向量;
设矩阵且|A|=一1,又设A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=(一1,一1,1)T。求a,b,c及λ0的值。
已知f(x)和g(x)在[a,b]上连续,在(a,b)内具有二阶导数,且在(a,b)内存在相等的最大值,又设f(a)=g(a),f(b)=g(b),试证明:存在ξ∈(a,b)使得f’’(ξ)=g’’(ξ)。
随机试题
中共十七大报告指出,中国国家发展战略的核心、提高综合国力的关键是【】
A.溃疡长轴与肠轴平行B.溃疡呈环形与肠轴垂直C.溃疡呈烧瓶状口小底大D.溃疡呈地图状肠结核
在对血证的治疗中,认为"凡治血证,须知其要,而血动之由,惟火惟气耳",此论见于()
给定材料:患者,男性,68岁,农民。主诉:发作性胸痛1月,持续心前区痛3h。现病史:1月前反复发作胸痛,劳累中发作,每次持续5~10min,休息可缓解。3h前活动突感心前区痛,伴左肩臂酸胀,含服硝酸甘油2小时未见好转,伴郁气、乏力、出汗。高血压病史8
信息系统是指以计算机进行信息处理为基础的()。
财政政策工具包括( )
下列各项中,最早记载番薯(甘薯)传入我国的文献是:
下列说法正确的是()。
SDH的帧可以分为3个主要区域:段开销(SOH)区域、信息净负荷(Payload)区域和【】。
Afewyearsagoitwas【B1】______tospeakofagenerationgap,adivisionbetweenyoungpeopleandtheirelders.Parents【B2】____
最新回复
(
0
)