首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X服从证态分布N(μ,σ2)(σ>0),从该总体中抽取简单随机样本X1,X2,…,X2n(n≥2),其样本均值为的数学期望E(Y)。
设总体X服从证态分布N(μ,σ2)(σ>0),从该总体中抽取简单随机样本X1,X2,…,X2n(n≥2),其样本均值为的数学期望E(Y)。
admin
2018-04-11
36
问题
设总体X服从证态分布N(μ,σ
2
)(σ>0),从该总体中抽取简单随机样本X
1
,X
2
,…,X
2n
(n≥2),其样本均值为
的数学期望E(Y)。
选项
答案
[*] 因为样本方差S
2
=[*]是总体方差的无偏估计,则E(S
2
)=σ
2
,即 [*] 由于X
1
,X
2
,…,X
2n
(n≥2)相互独立同分布,则X
i
与[*]也独立(i=1,2,…,n)。而由独立随机变量期望的性质(若随机变量X,Y独立,且E(X),E(Y)都存在,则E(XY)= E(X)E(Y)),所以 E(X
i
X
n+i
) = E(X
i
)E(X
n+i
) =μ
2
,E(X
i
[*])=E(X
i
)E[*]=μ
2
[*] 故有 [*] =[*](μ
2
一μ
2
—μ
2
+μ
2
)=0, 即[*] =(n—1)σ
2
+(n—1)σ
2
=2(n —1)σ
2
。 令Y
i
=X
i
+X
n+i
,则Y
1
,Y
2
,…,Y
n
是来自总体N(2μ,2σ
2
)的简单随机样本。 则Y=[*](X
i
+X
n+i
—[*]是Y
1
,Y
2
,…,Y
n
的样本均值。 由此可知S
2
=[*]是该样本的样本方差。由于样本方差的期望等于总体的方差,可知[*]=2σ
2
,从而 E(Y)=2(n—1)σ
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/xer4777K
0
考研数学一
相关试题推荐
设有4阶方阵A满足条件|3E+A|=0,AAT=2E,|A|<0,其中E是4阶单位阵.求方阵A的伴随矩阵A*的一个特征值.
已知线性方程组a,b为何值时,方程组有解;
设A是n×n矩阵,对任何n维列向量X都有AX=0,证明:A=0.
如图,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]上的图形分别是直径为2的下、上半圆周.设,则下列结论正确的是
极限=
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内g(x)≠0;
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且A的秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,C表示任意常数,则线性方程组AX=b的通解X=()。
设随机变量X服从正态分布N(μ,σ2)(σ>0),且P(X>σ)
设二维随机变量(X1,X2)的概率密度函数为f(x1,x2),则随机变量(Y1,Y2)(其中Y1=2X1,Y2=)的概率密度函数f1(y1,y2)等于()
讨论下列函数的连续性并判断间断点的类型:(I)y=(1+x)arctan;(II)y=-x);(Ⅲ)y=(Ⅳ)=f(x)=,x∈(0,2π);(Ⅴ)y=f[g(x)],其中f(x)=
随机试题
A.刺激外周化学感受器B.刺激中枢化学感受器C.直接刺激脑桥呼吸调整中枢D.直接兴奋呼吸中枢E.直接抑制呼吸动脉血中PCO2升高时,引起呼吸加强的主要机制是()
患者红细胞与抗A及抗B产生凝集,其血清与A、B、O红细胞均不产生凝集,则此患者的血型为
肺泡呼吸音是支气管呼吸音为
女,8天,足月顺产,母乳喂养。近2日来哭声低弱,不吃奶,黄疸加深。体检:体温不升,面色发灰,脐部有脓性分泌物。血清总胆红素221Ixmol/L(13mg/dl),直接胆红素17μmol/L。(1mg/dl),子血型“O”,母血型“A”。引起黄疸的原因是
自由撰稿人王小华得稿酬应纳税所得额为7300,其交纳个人所得税适用的税率为()。
某上市公司利用随机模型确定最佳现金持有量,已知现金余额下限为200万元,目标现金余额为360万元,则现金余额上限为()万元。
在WindowsXP中,通常由系统安装时安排在桌面上的图标是()。
享有“五岳独尊”“五岳之首”盛誉的是()。
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
Commutertrainsareoftenstuffyandcrowded,andtheyfrequentlyfailtorunontime.Asifthatwerenotbadenough,Tsuyoshi
最新回复
(
0
)