首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下四个命题,正确的个数为( ) ①设f(x)是(一∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=0; ②设f(x)在(一∞,+∞)上连续,且存在,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx= ③
以下四个命题,正确的个数为( ) ①设f(x)是(一∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=0; ②设f(x)在(一∞,+∞)上连续,且存在,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx= ③
admin
2015-12-03
62
问题
以下四个命题,正确的个数为( )
①设f(x)是(一∞,+∞)上连续的奇函数,则∫
-∞
+∞
f(x)dx必收敛,且∫
-∞
+∞
f(x)dx=0;
②设f(x)在(一∞,+∞)上连续,且
存在,则∫
-∞
+∞
f(x)dx必收敛,且∫
-∞
+∞
f(x)dx=
③若∫
-∞
+∞
f(x)dx与∫
-∞
+∞
g(x)dx都发散,则∫
-∞
+∞
f(x)dx+g(x)]dx未必发散;
④若∫
-∞
0
f(x)dx与∫
0
+∞
f(x)dx都发散,则∫
-∞
+∞
f(x)dx未必发散。
选项
A、C
1
y
1
+(C
2
一C
1
)y
2
+(C
1
一C
2
)y
3
。
B、C
1
y
1
+(C
2
一C
1
)y
2
+(1一C
2
)y
3
。
C、(C
1
+C
2
)y
1
+(C
2
一C
1
)y
2
+(C
1
—C
2
))y
3
。
D、(C
1
+C
2
)y
1
+(C
2
一C
1
)y
2
+(1一C
2
)y
3
。
答案
A
解析
∫
-∞
+∞
f(x,y)dx收敛
存在常数a,使∫
-∞
a
f(x)dx和∫
a
+∞
f(x)dx都收敛,此时
∫
-∞
+∞
f(x)dx=∫
-∞
a
f(x)dx+∫
a
+∞
f(x)dx。
设f(x)=x,则f(x)是(一∞,+∞)上连续的奇函数,且
但是
∫
-∞
0
f(x)=∫
-∞
0
xdx=∞,∫
0
+∞
f(x)dx=∫
0
+∞
xdx=∞,
故∫
-∞
+∞
f(x)dx发散,这表明命题①,②,④都不是真命题。
设f(x)=x,g(x)=一x,由上面讨论可知∫
-∞
+∞
f(x)dx与∫
-∞
+∞
g(x)dx都发散,但∫
-∞
+∞
[f(x)+g(x)]dx收敛,这表明命题③是真命题。故选A。
转载请注明原文地址:https://kaotiyun.com/show/ZHw4777K
0
考研数学一
相关试题推荐
设0<a<b,证明:(1+a)ln(1+a)+(1+b)ln(1+b)<(1+a+b)ln(1+a+b).
已知齐次线性方程组=有非零解,且矩阵A=晕正定矩阵.(1)求a的值;(2)求当XTX=2时,XTAX的最大值,其中X=(χ1,χ2,χ3)T∈R3.
设A为n阶矩阵且r(A)=n-1.证明:存在常数k,使得(A*)2=kA*.
设f(χ)=是连续函数,求a,b.
设容器的内表面是由曲线x=y+siny(0≤y≤π/2)绕y轴旋转一周所得的旋转曲面,若以π(m3/s)的速率注入液体。问需要多少时间能将容器注满水。
设函数f(x)在(—∞,+∞)上连续,且分别在(—∞,0)与(0,+∞)上二次可导,其导函数f’(x)的图像如图(1)所示,则f(x)在(—∞,+∞)有
讨论级数的敛散性.
下列级数中发散的是().
设S:x2+y2+z2=a2(z≥0),S1是S在第一卦限中的部分,则有
设二维随机变量(X,y)服从区域D上的均匀分布,其中D是由x±y=1与x=0所围成的三角形区域.求条件概率密度fY|X(y|x).
随机试题
Ofthetwosisters,Sarais(young)________one,andsheisalsotheonewholovestobequiet.
阅读《长恨歌》中的一段文字,回答问题。蜀江水碧蜀山青,圣主朝朝暮暮情。行宫见月伤心色,夜雨闻铃肠断声。天旋日转回龙驭,到此踌躇不能去。马嵬坡下泥土中,不见玉颜空死处。A.诗中“圣主”、“玉颜”分别指谁?B.这里表
金银花的主要成分不包括
细菌的侵袭力不包括
城市规划中“黄线”是指以下哪个控制界线?[2008年第12题]
期货公司未按期报送风险监管报表,中国证监会派出机构应当()。
应纳税额在人民币()元以下的船舶可以免征吨税。
导入的作用有哪些?以“friendship”为话题为高中课堂设计两种不同的导人方式并说明目的。
下图示意我国某山地的东坡和西坡的垂直带谱。读图完成下列问题。干旱河谷灌丛带所在的河谷终年盛行()。
Angerisanemotionthatcanbehardtocontrol.【C1】_____this,weshouldlearnhowtomanageangerinaconstructivemanner.In
最新回复
(
0
)