首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下四个命题,正确的个数为( ) ①设f(x)是(一∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=0; ②设f(x)在(一∞,+∞)上连续,且存在,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx= ③
以下四个命题,正确的个数为( ) ①设f(x)是(一∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=0; ②设f(x)在(一∞,+∞)上连续,且存在,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx= ③
admin
2015-12-03
98
问题
以下四个命题,正确的个数为( )
①设f(x)是(一∞,+∞)上连续的奇函数,则∫
-∞
+∞
f(x)dx必收敛,且∫
-∞
+∞
f(x)dx=0;
②设f(x)在(一∞,+∞)上连续,且
存在,则∫
-∞
+∞
f(x)dx必收敛,且∫
-∞
+∞
f(x)dx=
③若∫
-∞
+∞
f(x)dx与∫
-∞
+∞
g(x)dx都发散,则∫
-∞
+∞
f(x)dx+g(x)]dx未必发散;
④若∫
-∞
0
f(x)dx与∫
0
+∞
f(x)dx都发散,则∫
-∞
+∞
f(x)dx未必发散。
选项
A、C
1
y
1
+(C
2
一C
1
)y
2
+(C
1
一C
2
)y
3
。
B、C
1
y
1
+(C
2
一C
1
)y
2
+(1一C
2
)y
3
。
C、(C
1
+C
2
)y
1
+(C
2
一C
1
)y
2
+(C
1
—C
2
))y
3
。
D、(C
1
+C
2
)y
1
+(C
2
一C
1
)y
2
+(1一C
2
)y
3
。
答案
A
解析
∫
-∞
+∞
f(x,y)dx收敛
存在常数a,使∫
-∞
a
f(x)dx和∫
a
+∞
f(x)dx都收敛,此时
∫
-∞
+∞
f(x)dx=∫
-∞
a
f(x)dx+∫
a
+∞
f(x)dx。
设f(x)=x,则f(x)是(一∞,+∞)上连续的奇函数,且
但是
∫
-∞
0
f(x)=∫
-∞
0
xdx=∞,∫
0
+∞
f(x)dx=∫
0
+∞
xdx=∞,
故∫
-∞
+∞
f(x)dx发散,这表明命题①,②,④都不是真命题。
设f(x)=x,g(x)=一x,由上面讨论可知∫
-∞
+∞
f(x)dx与∫
-∞
+∞
g(x)dx都发散,但∫
-∞
+∞
[f(x)+g(x)]dx收敛,这表明命题③是真命题。故选A。
转载请注明原文地址:https://kaotiyun.com/show/ZHw4777K
0
考研数学一
相关试题推荐
为清除井底的污泥,用缆绳将抓斗放入井底,抓起污泥后提出井口(如图1—3—5所示)。已知井深30m,抓斗自重400N,缆绳每米重50N,抓斗抓起的污泥重2000N,提升速度为3m/s,在提升过程中,污泥以20N/s的速率从抓斗缝隙中漏掉。现将抓起污泥的抓斗提
设D是由点O(0,0),A(1,2)及B(2,1)为顶点构成的三角形区域,计算
已知极限.试确定常数n和c的值.
求极限.
设a1=1当n≥1时,an+1=,证明:数列{an}收敛并求其极限。
求二分之一球面x2+y2+z2=R2,x≥0,y≥0,z≥0的边界曲线的重心,设曲线的线密度ρ=1.
计算曲面积分,其中∑是面x2+y2+z2=1的外侧.
设S:x2+y2+z2=a2(z≥0),S1是S在第一卦限中的部分,则有
求空间第二型曲线积分其中L为球面x2+y2+z2=1在第1象限部分的边界线,从球心看L,L为逆时针.
设二维随机变量(X,y)服从区域D上的均匀分布,其中D是由x±y=1与x=0所围成的三角形区域.求y的概率密度fy(y).
随机试题
具有四级结构的蛋白质特征是
血浆中起关键作用的缓冲对是
疾病监测采用的方法属于
关于一般抹灰施工及基层处理的说法,错误的是()。
我国雨凇最多的地方是()。
材料:刘某是一名初中二年级的学生,他特别喜欢罗纳尔多,于是把头发剃成足球式的形状。第二天来学校上课,刚走进教室,被老师看见,老师便对他说:“你的发式太怪了,把头发再剪剪,恢复正常了再来上课,顺便让你爸爸妈妈来学校一趟。”刘某回家后,将这件事告知家人,第二
一个人应该活得是自己并且干净顾城人的生命里有一种能量,它使你不安宁。说它是欲望也行,幻想也行,妄想也行,总之它不可能停下来,它需要一
A、 B、 C、 D、 A图形中的外层四边形顺时针旋转45。、中间四边形顺时针旋转90。、内部四边形逆时针旋转45。,得到后一个图形。由此应选择A。
根据下述材料。写一篇700字左右的论说文,题目自拟。中心是令人向往的地方,处于中心地带往往有诸多便利、机会和认同。当然也有人在中心地带迷失,最终边缘化。边缘是让人平静的地方,它的质朴和别样让生活其中的人受益良多,甚至还吸引中心的人们探寻它的魅力。
Weliveinatimewhen,morethaneverbeforeinhistory,peoplearemovingabout.
最新回复
(
0
)