首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下四个命题,正确的个数为( ) ①设f(x)是(一∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=0; ②设f(x)在(一∞,+∞)上连续,且存在,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx= ③
以下四个命题,正确的个数为( ) ①设f(x)是(一∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=0; ②设f(x)在(一∞,+∞)上连续,且存在,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx= ③
admin
2015-12-03
38
问题
以下四个命题,正确的个数为( )
①设f(x)是(一∞,+∞)上连续的奇函数,则∫
-∞
+∞
f(x)dx必收敛,且∫
-∞
+∞
f(x)dx=0;
②设f(x)在(一∞,+∞)上连续,且
存在,则∫
-∞
+∞
f(x)dx必收敛,且∫
-∞
+∞
f(x)dx=
③若∫
-∞
+∞
f(x)dx与∫
-∞
+∞
g(x)dx都发散,则∫
-∞
+∞
f(x)dx+g(x)]dx未必发散;
④若∫
-∞
0
f(x)dx与∫
0
+∞
f(x)dx都发散,则∫
-∞
+∞
f(x)dx未必发散。
选项
A、C
1
y
1
+(C
2
一C
1
)y
2
+(C
1
一C
2
)y
3
。
B、C
1
y
1
+(C
2
一C
1
)y
2
+(1一C
2
)y
3
。
C、(C
1
+C
2
)y
1
+(C
2
一C
1
)y
2
+(C
1
—C
2
))y
3
。
D、(C
1
+C
2
)y
1
+(C
2
一C
1
)y
2
+(1一C
2
)y
3
。
答案
A
解析
∫
-∞
+∞
f(x,y)dx收敛
存在常数a,使∫
-∞
a
f(x)dx和∫
a
+∞
f(x)dx都收敛,此时
∫
-∞
+∞
f(x)dx=∫
-∞
a
f(x)dx+∫
a
+∞
f(x)dx。
设f(x)=x,则f(x)是(一∞,+∞)上连续的奇函数,且
但是
∫
-∞
0
f(x)=∫
-∞
0
xdx=∞,∫
0
+∞
f(x)dx=∫
0
+∞
xdx=∞,
故∫
-∞
+∞
f(x)dx发散,这表明命题①,②,④都不是真命题。
设f(x)=x,g(x)=一x,由上面讨论可知∫
-∞
+∞
f(x)dx与∫
-∞
+∞
g(x)dx都发散,但∫
-∞
+∞
[f(x)+g(x)]dx收敛,这表明命题③是真命题。故选A。
转载请注明原文地址:https://kaotiyun.com/show/ZHw4777K
0
考研数学一
相关试题推荐
用一块半径为r的圆形铁皮,剪去一圆心角为a的扇形,把余下部分围成一个圆锥.问a为何值时,圆锥的容积最大(图4—2所示)
设直线y=kx与曲线所围平面图形为D1,它们与直线x=1围成平面图形为D2.求k,使得D1与D2分别绕x轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;
设xOy平面上有正方形区域D={(x,y)|0≤x≤1,0≤y≤1}及直线l:x+y=t(t≥0).若S(t)表示正方形区域D位于直线l左下方部分的面积,试求
设曲线L的极坐标方程为r=r(θ),M(r,θ)为L上任一点,M0(2,0)为L上一定点.若极径OM0,OM与曲线L所围成的曲边扇形的面积值等于L上M0,M两点间弧长值的一半,求曲线L的极坐标方程.
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
求极限:.
设f(χ)=是连续函数,求a,b.
计算二重积分.
计算定积分.
在区间[0,1]上函数f(x)=nx(1-x)n(n为正整数)的最大值记为M(n),则=_______.
随机试题
A.化脓性关节炎B.类风湿关节炎C.狼疮性关节炎D.风湿性关节炎E.结核性关节炎女孩,14岁。长期不规则发热,反复发生淡红色带鳞屑斑丘疹,关节肿痛呈多发性、对称性,伴贫血、肝脾肿大及尿液改变。
Itisoftendifficultforamantobequitesurewhattaxheoughttopaytothegovernmentbe-causeitdependsonsomanydiffe
A、 B、 C、 D、 B
何为收涩药?
流行病学试验研究的特点包括
一肺痨患者,男性,25岁,咳嗽、咯血、潮热颧红,自汗盗汗,面白神疲,气短声怯,食欲不振。舌尖红苔薄白,脉细数无力。应辨证为
急症哮喘患者,病因未明,为缓解症状,应立即选用
下列关于流水施工的说法中,正确的有()。
自然主义教育的代表人物是()。
外语单词语音和字形联系的识记最适宜于用早期学习研究中的()范型来解释。
最新回复
(
0
)