设f(χ)在(-1,1)内二阶连续可导,且f〞(χ)≠0.证明: (1)对(-1,1)内任一点χ≠0,存在唯一的θ(χ)∈(0,1),使得f(χ)=f(0)+f(0)+χf′(χ)χ]; (2).

admin2017-09-15  36

问题 设f(χ)在(-1,1)内二阶连续可导,且f〞(χ)≠0.证明:
    (1)对(-1,1)内任一点χ≠0,存在唯一的θ(χ)∈(0,1),使得f(χ)=f(0)+f(0)+χf′(χ)χ];
    (2)

选项

答案(1)对任意χ∈(-1,1),根据微分中值定理,得 f(χ)=f(0)+χf′[θ(χ)χ],其中0<θ(χ)<1. 因为f〞(χ)∈C(-1,1)且f〞(χ)≠0,所以f〞(χ)在(-1,1)内保号,不妨设f〞(χ)>0, 则f′(χ)在(-1,1)内单调增加,又由于χ≠0,所以θ(χ)是唯一的. (2)由泰勒公式,得 f(χ)=f(0)+f′(0)χ+[*],其中ξ介于0与χ之间, 而f(χ)=f(0)+χf′[θ(χ)χ],所以有 [*] 令χ→0,再由二阶导数的连续性及非零性,得[*]

解析
转载请注明原文地址:https://kaotiyun.com/show/xzk4777K
0

随机试题
最新回复(0)