首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在(-1,1)内二阶连续可导,且f〞(χ)≠0.证明: (1)对(-1,1)内任一点χ≠0,存在唯一的θ(χ)∈(0,1),使得f(χ)=f(0)+f(0)+χf′(χ)χ]; (2).
设f(χ)在(-1,1)内二阶连续可导,且f〞(χ)≠0.证明: (1)对(-1,1)内任一点χ≠0,存在唯一的θ(χ)∈(0,1),使得f(χ)=f(0)+f(0)+χf′(χ)χ]; (2).
admin
2017-09-15
61
问题
设f(χ)在(-1,1)内二阶连续可导,且f〞(χ)≠0.证明:
(1)对(-1,1)内任一点χ≠0,存在唯一的θ(χ)∈(0,1),使得f(χ)=f(0)+f(0)+χf′(χ)χ];
(2)
.
选项
答案
(1)对任意χ∈(-1,1),根据微分中值定理,得 f(χ)=f(0)+χf′[θ(χ)χ],其中0<θ(χ)<1. 因为f〞(χ)∈C(-1,1)且f〞(χ)≠0,所以f〞(χ)在(-1,1)内保号,不妨设f〞(χ)>0, 则f′(χ)在(-1,1)内单调增加,又由于χ≠0,所以θ(χ)是唯一的. (2)由泰勒公式,得 f(χ)=f(0)+f′(0)χ+[*],其中ξ介于0与χ之间, 而f(χ)=f(0)+χf′[θ(χ)χ],所以有 [*] 令χ→0,再由二阶导数的连续性及非零性,得[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/xzk4777K
0
考研数学二
相关试题推荐
[*]
[*]
[*]
拟建一个容积为V的长方体水池,设它的底为正方形,如果池底单位面积的造价是四周单位面积造价的2倍,试将总造价表示成底边长的函数,并确定此函数的定义域。
证明:当x≥5时,2x>x2.
用拉格朗日定理证明:若,且当x>0时,fˊ(x)>0,则当x>0时,f(x)>0.
设,证明fˊ(x)在点x=0处连续.
证明曲线y=x4-3x2+7x-10在x=1与x=2之间至少与x轴有—个交点.
证明:函数在(0,0)点连续,fx(0,0),fy(0,0)存在,但在(0,0)点不可微.
求下列各函数的二阶导数:(1)y=ln(1+x2)(2)y=xlnx(3)y=(1+x2)arctanx(4)y=xex2
随机试题
计量标准的主要计量特性包括哪几个方面?
关于静息电位的叙述,下列哪项是正确的
手术中输血后,发现术野渗血不止和低血压,最可能是出现了哪种输血并发症
肺痨阴虚火旺型常用方剂是
对于肠道传染病起主导作用的预防措施是()
关于缺血性脑卒中急性期的治疗,说法不正确的是
根据代理商是否有权处理法律行为划分,代理商可划分为()。
由于中国代表团没有透彻地理解奥运会的游戏规则,因此在伦敦奥运会上,无论是对赛制赛规的批评建议,还是对裁判执法的质疑,前后几度申诉都没有取得成功。为使上述推理成立,必须补充以下哪一项作为前提?
甲、乙、丙、丁、戊分别住在同一个小区的1、2、3、4、5号房子内。现已知:①甲与乙不是邻居;②乙的房号比丁小;③丙住的房号数是双数;④甲的房号比戊大3号。根据上述条件.丁所住的房号是:
SocialmediapresentschallengetouniversitiesUniversitieshaveanewweaponinthebattletoprotecttheirreputations:thef
最新回复
(
0
)