首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,α3均为n维列向量,A是m×n矩阵,下列选项正确的是【 】
设α1,α2,…,α3均为n维列向量,A是m×n矩阵,下列选项正确的是【 】
admin
2021-01-25
62
问题
设α
1
,α
2
,…,α
3
均为n维列向量,A是m×n矩阵,下列选项正确的是【 】
选项
A、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
,线性相关.
B、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
,线性无关.
C、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
,线性相关.
D、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
,线性无关.
答案
A
解析
解1 若α
1
,α
2
,…,α
s
线性相关,则存在一组不全为零的常数α
1
,α
2
,…,α
s
,使得 k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0两端左乘矩阵A,得
k
1
Aα
1
+k
2
Aα
2
+…+k
s
Aα
s
=0因k
1
,k
2
,…,k
s
不全为零,故由线性相关的定义,即知向量组Aα
1
,Aα
2
,…,Aα
s
线性相关.
解2 用排除法
若A=0为零矩阵,则Aα
1
,Aα
2
,…,Aα
s
均为零向量,从而Aα
1
,Aα
2
,…,Aα
s
线性相关,于是选项(B)(D)均不对.若
,则α
1
、α
2
线性无关,且Aα
1
=α
1
与Aα
2
=α
2
线性无关,故选项(C)也不对,所以只有选项(A)正确.
本题主要考查向量组线性相关性的定义及常用的讨论方法.实际上,由于矩阵可以代表线性变换,而线性变换可将线性组合映射为线性组合,从而可将线性相关组映射为线性相关组,如果了解这一点,则可直接选(A),而不必再深一步考虑.
转载请注明原文地址:https://kaotiyun.com/show/y0x4777K
0
考研数学三
相关试题推荐
设函数f(t)在[0,+∞)上连续,且满足方程求f(t).
已知幂级数an(x+2)n在x=0处收敛,在x=-4处发散,则幂级数an(x-3)n的收敛域为______.
设A是三阶矩阵,其三个特征值为则|4A*+3E|=____________.
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
设曲线L过点(1,1),L上任意一点P(x,y)处的切线交x轴于点T,O为坐标原点,若|PT|=|OT|。试求曲线L的方程。
已知三阶方阵A,B满足关系式E+B=AB,A的三个特征值分别为3,-3,0,则|B-1+2E|=_______________.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.(Ⅰ)计算PTDP,其中(Ⅱ)利用(Ⅰ)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明你的结论.
计算积分dxdy,其中D是第一象限中以曲线y=与x轴为边界的无界区域.
计算二重积分,其中D为x2+y2=1,x2+y2=2x所围中间一块区域.
设X,Y为两个随机变量,若对任意非零常数a,b有D(aX+bY)=D(aX一bY),下列结论正确的是().
随机试题
企业出售固定资产应交的营业税,应借记的会计科目是()
阴道镜下表面构型为脑回状,局部血管管腔增大,螺旋状,血管间距增大,碘不着色。可能存在下列哪种病变
报关企业及其跨关区分支机构注册登记许可期限均为一年,被许可人需要延续注册登记许可有效期的,应当办理注册登记许可延续手续。()
以下说法错误的是()
事业单位的下列各项业务中,不会引起专用基金发生增减变化的是()。
收养关系成立需要具备( )方面的要件。
A.促胃液素B.缩胆囊素C.促胰液素D.抑胃肽E.促胃动素可促进胰腺和肝脏分泌NaHCO3的主要胃肠激素是
在20世纪30年代,人们已经发现出一种有绿色和褐色纤维的棉花。但是,直到最近培育出一种可以机纺的长纤维品种后,它们才具有了商业上的价值。由于这种棉花不需要染色,加工企业就省去了染色的开销。并且避免了由染色工艺流程带来的环境污染。从题干可推出以下哪项结论?
下图的两种编码方案分别是_______。(2008年上半年试题)
AberdeenisanadministrativecenterofGrampianRegion,NortheasternScotland,ontheNorthSeaatthemouthsoftheDeeandDo
最新回复
(
0
)