首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(Ⅰ),若向量组(Ⅰ)和向量组(Ⅱ)等价,求a的取值,并将β3用α1,α2,α3线性表示.
已知向量组(Ⅰ),若向量组(Ⅰ)和向量组(Ⅱ)等价,求a的取值,并将β3用α1,α2,α3线性表示.
admin
2019-06-25
22
问题
已知向量组(Ⅰ)
,若向量组(Ⅰ)和向量组(Ⅱ)等价,求a的取值,并将β
3
用α
1
,α
2
,α
3
线性表示.
选项
答案
由等价的定义可知β
1
,β
2
,β
3
都能由α
1
,α
2
,α
3
线性表示,则有 r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
) 对(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)作初等行变换可得: (α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=[*] 当a= —1时,有r(α
1
,α
2
,α
3
)<r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
); 当a=1,则r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=2 可知a≠1且a≠—1时,此时r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=3 则由a=1或者a≠1且a≠—1时,β
1
,β
2
,β
3
可由α
1
,α
2
,α
3
线性表示. 此时,要保证α
1
,α
2
,α
3
可由β
1
,β
2
,β
3
线性表示, 对(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)作初等行变换可得: [*] 当a=1时,有r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=2 可知当a≠1且a≠—1时,此时r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=3 此时,α
1
,α
2
,α
3
可由β
1
,β
2
,β
3
线性表示, 综上所述:当a= —1时,向量组α
1
,α
2
,α
3
与向量组β
1
,β
2
,β
3
可相互线性表示. (α
1
,α
2
,α
3
,β
3
)→[*] 当a≠1时,则β
3
=α
1
—α
2
+α
3
. (α
1
,α
2
,α
3
,β
3
)→[*] 当a=1时, 基础解系为[*],则β
3
=(3—2k)α
1
+(k—2)α
2
+kα
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/HTJ4777K
0
考研数学三
相关试题推荐
由定积分的奇偶性得[*]
设则
一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率.一次性抽取4个球;
设P(A)=P(B)=P(C)=,P(AB)=0,P(AC)=P(BC)=则A,B,C都不发生的概率为_____________.
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g′(x)≠0.证明:存在ξ∈(a,b),使得
设函数y=y(x)由e2x+y—cosxy=e一1确定,则曲线y=y(x)在x=0处的法线方程为___________.
设的逆矩阵A-1的特征向量,求x,y,并求A-1对应的特征值μ.
设α为n维非零列向量,证明:α为矩阵A的特征向量.
(2014年)求极限
(2005年)微分方程xy’+y=0满足初始条件y(1)=2的特解为_______。
随机试题
腹外疝的疝囊是
某工程双代号时标网络计划及第4周末检查实际进度时前锋线如下图所示,检查结果表明()。
关于竣工决算,下列说法正确的是()。
某县城酒厂生产粮食白酒,并销售进口分装的葡萄酒,2017年8月发生下列业务:(1)收购酿酒用高粱40吨,收购凭证注明收购价款80000元。(2)收购销售高粱白酒18吨,每吨不含税出厂价16000元,每吨收取包装物押金140.4元;该酒厂
1986年4月六届人大审议通过了《教育法》。()
最近某省几个市的市委书记都以“多干实事,不求宣传”的理由表态,提出五种新闻不报道,其中有“我们正干的事不报道,正想的事不报道”,你对这种态度如何评价?
根据资料,回答以下问题。2013年上半年,邮政企业和全国规模以上快递服务企业业务收入(不包括邮政储蓄银行直接营业收入,以下简称邮政全行业)累计完成1224.9亿元,同比增长25.8%;业务总量累计完成1215.1亿元,同比增长30.1%。
亚洲国家躲过了近年来的全球大萧条,其中最主要的原因是它未被卷入2008年金融危机。然而近日一项调查显示,亚洲的债务水平正在以可怕的速度增长。从某些方面来说.这有部分合理理由.许多国家的超低息政策鼓励贷款,债务增长是财富增长的自然产物。但值得警惕的是,亚洲国
下列情形属于我国行政复议受案范围的是:
《社歇老爹报》
最新回复
(
0
)