首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设当a≤x≤b时,a≤f(x)≤b,并设存在常数k,0≤k<1,对于[a,b]上的任意两点x1与x2,都有|f(x1)-f(x2)|≤k|x1-x2|,证明: 对于任意给定的x1∈[a,b],定义xn+1=f(xn),n=1,2,…,则xn存在,且xn=
设当a≤x≤b时,a≤f(x)≤b,并设存在常数k,0≤k<1,对于[a,b]上的任意两点x1与x2,都有|f(x1)-f(x2)|≤k|x1-x2|,证明: 对于任意给定的x1∈[a,b],定义xn+1=f(xn),n=1,2,…,则xn存在,且xn=
admin
2021-06-16
75
问题
设当a≤x≤b时,a≤f(x)≤b,并设存在常数k,0≤k<1,对于[a,b]上的任意两点x
1
与x
2
,都有|f(x
1
)-f(x
2
)|≤k|x
1
-x
2
|,证明:
对于任意给定的x
1
∈[a,b],定义x
n+1
=f(x
n
),n=1,2,…,则
x
n
存在,且
x
n
=ξ.
选项
答案
为证[*]x
n
=ξ,考虑 |x
n
-ξ|=|f(x
n-1
)-f(ξ)|≤k|x
n-1
-ξ|≤…≤k
n-1
|x
1
-ξ| 其中x
1
与ξ都是确定的值。 所以当n→∞时,|x
n
-ξ|→0,从而证明了[*]x
n
存在,且[*]x
n
=ξ,证明完毕。
解析
注意:此题若增加条件“f(x)在[a,b]上可导,且|f’(x)|≤k<1”则可应用拉格朗日中值定理来完成不等式。
对[a,b]上的任意两点x
1
,x
2
均有
|f(x
1
)-f(x
2
)|=|f’(ξ)(x
1
-x
2
)|≤k|x
1
-x
2
|(ξ介于x
1
与x
2
之间),
也能继续证明本题的结论,其子题可如此设置:
设f(x)=a+bsinx,a为任意常数,0<b<1。
(1)证明f(x)=x有唯一实根ξ;
(2)定义x
n+1
=f(x
n
),n=1,2,...,证明:
.
转载请注明原文地址:https://kaotiyun.com/show/y6y4777K
0
考研数学二
相关试题推荐
曲线y=lnx上与直线x+y=1垂直的切线方程为_______.
设f(x)=则f[f(x)]=_______.
若线性方程组有解,则常数a1,a2,a3,a4应满足条件______.
设A=(aij)3×3是实正交矩阵,且a11=1,b=(1,0,0)T,则线性方程组Ax=b的解是________.
已知当χ→0时,-1与cosχ-1是等价无穷小,则常数a=_______.
方程组有非零解,则k=___________。
若极限=A,则函数f(χ)在χ=a处
设证明:
设当x→x0时,α(x),β(x)(β(x)≠0)都是无穷小,则当x→x0时,下列表达式中不一定为无穷小的是()
随机试题
下列关于对乙酰氨基酚的叙述,不正确的是
气逆痰阻型呃逆的治疗宜选用
A、胆汁B、胆固醇C、胆绿素D、血红素E、胆素在体内可转变生成胆色素的原料是
我国现行的药品质量管理规范包括
企业分配工资费用时,应借记的科目有()。
商业助学贷款原则上的期限为()。
材料:下面是某初中生物教师编制的客观题试题:一、单项选择题①植物根部通过根毛吸收而来的水分和无机盐进入植物体内后通过()运送到植物的枝、叶、花和果实。A.导管B.筛管C.细胞间质②植物的繁殖器官是()。A.根、茎、叶B
卡车司机甲在行车途中,被一吉普车超过,甲顿生不快,便加速超过该车。不一会儿,该车又超过了甲,甲又加速超过该车。当该车再一次试图超车行至卡车左侧时,甲对坐在副座的乙说:“我要吓他一下,看他还敢超我。”随即将方向盘向左边一打,吉普车为躲避碰撞而翻下路基,司机重
验钞机上发出的光能使钞票上的荧光物质发光,电视机的遥控器发出的光可控制电视机,对于它们发出的光,下列说法正确的是( )。
Australia,officiallytheCommonwealthofAustralia,isacountryinthesouthernhemisphere.Itcomprisesthemainlandofthew
最新回复
(
0
)