首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设当a≤x≤b时,a≤f(x)≤b,并设存在常数k,0≤k<1,对于[a,b]上的任意两点x1与x2,都有|f(x1)-f(x2)|≤k|x1-x2|,证明: 对于任意给定的x1∈[a,b],定义xn+1=f(xn),n=1,2,…,则xn存在,且xn=
设当a≤x≤b时,a≤f(x)≤b,并设存在常数k,0≤k<1,对于[a,b]上的任意两点x1与x2,都有|f(x1)-f(x2)|≤k|x1-x2|,证明: 对于任意给定的x1∈[a,b],定义xn+1=f(xn),n=1,2,…,则xn存在,且xn=
admin
2021-06-16
73
问题
设当a≤x≤b时,a≤f(x)≤b,并设存在常数k,0≤k<1,对于[a,b]上的任意两点x
1
与x
2
,都有|f(x
1
)-f(x
2
)|≤k|x
1
-x
2
|,证明:
对于任意给定的x
1
∈[a,b],定义x
n+1
=f(x
n
),n=1,2,…,则
x
n
存在,且
x
n
=ξ.
选项
答案
为证[*]x
n
=ξ,考虑 |x
n
-ξ|=|f(x
n-1
)-f(ξ)|≤k|x
n-1
-ξ|≤…≤k
n-1
|x
1
-ξ| 其中x
1
与ξ都是确定的值。 所以当n→∞时,|x
n
-ξ|→0,从而证明了[*]x
n
存在,且[*]x
n
=ξ,证明完毕。
解析
注意:此题若增加条件“f(x)在[a,b]上可导,且|f’(x)|≤k<1”则可应用拉格朗日中值定理来完成不等式。
对[a,b]上的任意两点x
1
,x
2
均有
|f(x
1
)-f(x
2
)|=|f’(ξ)(x
1
-x
2
)|≤k|x
1
-x
2
|(ξ介于x
1
与x
2
之间),
也能继续证明本题的结论,其子题可如此设置:
设f(x)=a+bsinx,a为任意常数,0<b<1。
(1)证明f(x)=x有唯一实根ξ;
(2)定义x
n+1
=f(x
n
),n=1,2,...,证明:
.
转载请注明原文地址:https://kaotiyun.com/show/y6y4777K
0
考研数学二
相关试题推荐
设F(χ)是f(χ)的原函数,F(1)=.若当χ>0时,有f(χ)F(χ)=,试求f(χ)=________.
位于x轴上区间[一a,a]内质量为m的均匀细棒对位于y轴上点(0,一a)处质量为m0的质点的引力为___________.
设A=,而n≥2为正整数,则An-2An-1=__________.
极限=_______.
已知曲线的极坐标方程是r=1-cosθ,求该曲线上对应于θ=π/6处的切线与法线的直角坐标方程.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,设证明二次型f对应的矩阵为2ααT+ββT;
在曲线y=(χ-1)2上的点(2,1)处作曲线的法线,由该法线、χ轴及该曲线所围成的区域为D(y>0),则区域D绕χ轴旋转一周所成的几何体的体积为().
设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是().
设n阶矩阵A的伴随矩阵为A*,证明:若|A|=0,则|A*|=0;
设a=,β=,则当χ→0时,两个无穷小的关系是().
随机试题
可主宿食的脉象有
肥胖症皮下脂肪厚度超声测量误差的原因是
连翘的性状特征有( )。
作用于α-去氧糖的反应是()
钻孔灌注桩在灌注水下混凝土过程中,导管的埋置深度宜控制在()m。
合同文件是索赔的最主要依据,其内容包括()。
根据国务院发布的《“十四五”国家知识产权保护和运用规划》,下列表述错误的是()。
Comparisonsweredrawnbetweenthedevelopmentoftelevisioninthe20thcenturyandthediffusionofprintinginthe15thand1
Youwillnowlistentopartofaconversation.Youwillthenbeaskedaquestionaboutit.Afteryouhearthequestion,giveyou
Manycourtsarereported______inChinatohandleintellectualpropertyrightstoprotectforeignanddomesticcompaniesandindi
最新回复
(
0
)