首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶矩阵A=的秩R(A)=1,α1=(1,-2,1)T,α2=(1,1,-1)T,α3=(2,1,-2)T是A的特征向量. (Ⅰ)求矩阵A; (Ⅱ)求方程组AX=b的通解。其中b=(2,1,-2)T.
设3阶矩阵A=的秩R(A)=1,α1=(1,-2,1)T,α2=(1,1,-1)T,α3=(2,1,-2)T是A的特征向量. (Ⅰ)求矩阵A; (Ⅱ)求方程组AX=b的通解。其中b=(2,1,-2)T.
admin
2020-10-30
59
问题
设3阶矩阵A=
的秩R(A)=1,α
1
=(1,-2,1)
T
,α
2
=(1,1,-1)
T
,α
3
=(2,1,-2)
T
是A的特征向量.
(Ⅰ)求矩阵A;
(Ⅱ)求方程组AX=b的通解。其中b=(2,1,-2)
T
.
选项
答案
(Ⅰ)因为|α
1
,α
2
,α
3
|=[*] 所以α
1
,α
2
,α
3
线性无关,于是A可相似对角化. 由R(A)=1,知A有两个特征值λ
1
=λ
2
=0,A的3行元素成比例,显然Aα
1
=0·α
1
,Aα
2
=0·α
2
,即α
1
,α
2
是A的特征值λ
1
=λ
2
=0对应的特征向量;又[*]故A的特征向量α
3
;对应的特征值λ
3
=-1.取P=(α
1
,α
2
,α
3
)=[*],则P
-1
AP=A=[*] 于是[*] (Ⅱ)对[*]实施初等行变换,得[*] Ax=b的同解方程组为[*] 故Ax=b的通解为 [*],其中k
1
,k
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/yDx4777K
0
考研数学三
相关试题推荐
已知实二次型f(x1,x2,x3)=a(x12+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_________.
(87年)求矩阵A=的实特征值及对应的特征向量.
设有两条抛物线y=nx2+1/n和y=(n+1)x2+1/(n+1).记它们交点的横坐标的绝对值为an.求两条抛物线所围成的平面图形的面积Sn;
设A,B为同阶可逆矩阵,则().
“对任意的ε∈(0,1),总存在正整数N,当n≥N时,恒有|xn-a|≤2ε”是数列{xn}收敛于a的().
[2018年]设数列{xn)满足:x1>0,(n=1.2.…).证明.{xn)收敛,并求
设X是连续型随机变量,其分布函数为F(x).若数学期望E(X)存在,则当x→+∞时,1—F(x)是的().
设随机变量X的密度函数为ψ(x),且ψ(一x)=ψ(x),F(x)为X的分布函数,则对任意实数a,有()
设5x12+x22+tx32+4x1x2一2x1x3一2x2x3为正定二次型,则t的取值范围是__________.
当x→0时,ex—(ax2+bx+1)是比x2高阶的无穷小,则()
随机试题
Ms.Arroyasaysthatwhenworkshop______beginstoslowdown,itmaybetimetohiremoreworkers.
教育法形式上的特点是()
A.糖皮质激素B.细胞毒药物C.两者均是D.两者均不是初治的微小病变型肾病应选用
甲状旁腺分泌下列哪种激素,能调节机体内钙、磷的代谢,维持血钙平衡
中医"穿囊漏"是指
下列关于我国人民代表大会制的说法正确的是()。
按照投资者承担责任形式的不同,企业可以划分为()。
(2010年考试真题)上市公司盈利能力的成长性和稳定性是影响其市盈率的重要因素。()
获得2012年夏季奥运会的举办权的城市是()。
Wheredoesthisconversationprobablytakeplace?
最新回复
(
0
)