首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)*,则A*X=0的基础解系为( ).
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)*,则A*X=0的基础解系为( ).
admin
2019-04-09
61
问题
设α
1
,α
2
,α
3
,α
4
为四维非零列向量组,令A=(α
1
,α
2
,α
3
,α
4
),AX=0的通解为X=k(0,一1,3,0)
*
,则A
*
X=0的基础解系为( ).
选项
A、α
1
,α
3
B、α
2
,α
3
,α
4
C、α
1
,α
2
,α
4
D、α
3
,α
4
答案
C
解析
因为AX=0的基础解系只含一个线性无关的解向量,
所以r(A)=3,于是r(A
*
)=1.
因为A
*
A=|A|E=O,所以α
1
,α
2
,α
3
,α
4
为A
*
X=0的一组解,
又因为一α
2
+3α
3
=0,所以α
2
,α
3
线性相关,从而α
1
,α
2
,α
4
线性无关,即为A
*
X=0的一个基础解系,选(C).
转载请注明原文地址:https://kaotiyun.com/show/yKP4777K
0
考研数学三
相关试题推荐
设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().
设A是4×3阶矩阵且r(A)=2,B=,则r(AB)=______.
设A为二阶矩阵,且A的每行元素之和为4,且|E+A|=0,则|2E+A2|为().
设A,B为n阶对称矩阵,下列结论不正确的是().
设二阶常系数非齐次线性微分方程y’’+y’+qy=Q(x)有特解y=3e-4x+x2+3x+2,则Q(x)=______,该微分方程的通解为______.
设L:y=e-x(x≥0).(1)求由y=e-x、x轴、y轴及x=a(a>0)所围成平面区域绕x轴一周而得的旋转体的体积V(a).(2)设V(c)=V(a),求c.
设某种元件的使用寿命X的概率密度为f(x;θ)=其中θ>0为未知参数。又设x1,x2,…,xn是X的一组样本观测值,求参数θ的最大似然估计值。
设(X,Y)为二维随机变量,则下列结论正确的是()
设随机事件A,B,C两两独立,且P(A),P(B),P(C)∈(0,1),则必有()
设f(x)在x=a处n阶可导(n≥2),且当x→a时f(x)是x一a的n阶无穷小量.求证;f(x)的导函数f’(x)当x→a时是x一a的n一1阶无穷小量.
随机试题
1岁患儿,母乳喂养,未加辅食,约2个月前发现患儿活动少,不哭、不笑,面色苍黄,表情呆滞,手及下肢颤抖。检查发现肝、脾增大,血红细胞1×1012/L,血红蛋白65g/L。血清铁、叶酸正常,血清维生素B12降低。对该患儿处理正确的是
A.血培养B.粪便培养C.尿培养D.临床表现E.肥达反应
女孩,6岁,2月来反复突发突止的意识障碍,表现为突然动作中断,呆立凝视,呼之不应,手中物体掉落,但从不跌倒,持续数秒钟缓解。对该例新诊断癫痫患儿治疗用药原则不应包括的是
简述商业登记的性质及效力。(西北政法大学2005年考研真题)
孙某与王某集资购买了一辆汽车,并由王某营运,后因两人发生结算纠纷,王某诉至县人民法院,要求将汽车判归己有,由其偿还孙某的投资,或由孙某退还其投资,将汽车归孙某所有。诉讼中王某提出诉讼保全申请,并要求在诉讼期间汽车继续营运,以其朋友刘某的汽车为担保。法院裁定
会计电算化是一个用电子计算机代替人工记账、算账、报账的过程。()
教育学作为一门独立的学科萌芽于()。
美国华盛顿儿童博物馆的格言“我听见就忘记了我看见就记住了我做了就理解了”主要说明了在教育过程中应()。
《义务教育数学课程标准(2011年版)》指出模型思想的建立是学生体会和理解______与______联系的基本途径。
听雨写下这个题目,便不自觉地在心里吟诵起那些熟悉的诗篇,而且大多是古人的句子。雨,大概是古典的。而且常常当人们进入一种诗化的境况,才会从喧嚣的市井声浪里逃出来,逃出来的耳朵才能听雨。听雨有三个条件:第一是心静而神动,心静者不为市井或朝野的得失荣辱
最新回复
(
0
)