首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设D0是单连通区域,点M0∈D0,D=D0\{M0}(即D是单连通区域D0除去一个点M0),若P(x,y),Q(x,y)在D有连续的一阶偏导数且((x,y)∈D),问: (I)∫LPdx+Qdy是否一定在D上与路径无关; (Ⅱ)若又存在一条环绕M0的分段光
设D0是单连通区域,点M0∈D0,D=D0\{M0}(即D是单连通区域D0除去一个点M0),若P(x,y),Q(x,y)在D有连续的一阶偏导数且((x,y)∈D),问: (I)∫LPdx+Qdy是否一定在D上与路径无关; (Ⅱ)若又存在一条环绕M0的分段光
admin
2021-11-15
69
问题
设D
0
是单连通区域,点M
0
∈D
0
,D=D
0
\{M
0
}(即D是单连通区域D
0
除去一个点M
0
),若P(x,y),Q(x,y)在D有连续的一阶偏导数且
((x,y)∈D),问:
(I)∫
L
Pdx+Qdy是否一定在D上与路径无关;
(Ⅱ)若又存在一条环绕M
0
的分段光滑闭曲线C
0
使得
+Qdy=0,∫
L
Pdx+Qdy是否一定在D上与路径无关.
选项
答案
(I)这里D不是单连通区域,所以不能肯定积分∫
L
Pdx+Qdy在D上与路径无关.例如:积分[*]则 [*] 即在全平面除原点外P(x,y),Q(x,y)均有连续的一阶偏导数,且[*] 但若取L为C
+
即逆时针方向的以原点为圆心的单位圆周,则 [*] 因此,该积分不是与路径无关. (Ⅱ)能肯定积分在D上与路径无关.按挖去奇点的思路,我们作以M
0
为心,ε>0为半径的圆周C
ε
,使C
ε
在C
0
所围区域内.C
ε
和C
0
所围区域记为D
ε
(见图10.10).在D
ε
上用格林公式得 [*] 其中C
0
,C
ε
均是逆时针方向.所以 [*] 因此,ε>0充分小,只要C
ε
在C
0
所围区域内,均有 [*] 现在我们可证:对D内任意分段光滑闭曲线C,均有 [*] 若C不包围M
0
,在C所围的区域上用格林公式,立即可得②式成立.若C包围M
0
点,则可作以M
0
为心,ε>0为半径的小圆周C
ε
,使得C
ε
在C所围区域内且①成立.在C与C
ε
所围的区域上用格林公式同理可证 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/yRl4777K
0
考研数学一
相关试题推荐
二元函数f(x,y)=x2(2+y2)+ylny的极值__________.
已知曲线L:y=x2(0≤x≤=________。
max{x+2,x2}dx=___________.
计算(y2-x2)dx+(2x2-y2)dy+(3x2-y2)dz=__________,其中L是平面x+y+z=2与柱面丨x丨+丨y丨=1的交线,从z轴正向看去,L为逆时针方向.
一批产品中一等品、二等品、三等品的比例分别为60%,30%,10%,从中任取一件结果不是三等品,则取到一等品的概率为_______.
设二次型f(x1,x2,x3)=(x1+2x2+x3)2+[一x1+(a一4)x2+2x3]2+(2x1+x2+ax3)2正定,则参数a的取值范围是()
设X1,X2,…,Xn相互独立同分布,每个分布函数均为F(x),记X=min(X1,…,Xn),Y=max(X1,…,Xn),则(X,Y)的分布函数F(x,y)当y>x时在(x,y)处的值为()
计算其中Ω为半球体x2+y2+z2≤1,z≥0.
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为
[2009年]袋中有一个红球、两个黑球、三个白球.现在有放回地从袋中取两次,每次取一个,以X,Y,Z分别表示两次取球所取得的红球、黑球与白球个数.求二维随机变量(X,Y)的概率分布.
随机试题
下列关于心电图波形与心肌动作电位关系的捕述,正确的是
肝脏穿刺注意事项说法错误的是
1948年世界医学会颁布了全世界医务人员道德行为准则,它的基础是
以下属于杠杆比率指标的有()。
行政、事业单位购置固定资产过程中发生的差旅费,不计入固定资产价值。()
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:存在ξ∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ξ).
有以下程序#defineP3voidF(intx){return(P*x*x);}main(){printf("%d\n",F(3+5));}程序运行后的输出结果是
ThechiefexecutiveoftheUnitedStatesisthepresidenttogetherwiththe
Weoftenpassonlittlebitsofinformationtoourchildren,notknowingiftheyaretrue,andonlybecausetheywere【B1】_______
最新回复
(
0
)