首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第三列为。 证明A+E为正定矩阵,其中E为三阶单位矩阵。
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第三列为。 证明A+E为正定矩阵,其中E为三阶单位矩阵。
admin
2018-02-07
60
问题
设二次型f(x
1
,x
2
,x
3
)=x
T
Ax在正交变换x=Qy下的标准形为y
1
2
+y
2
2
,且Q的第三列为
。
证明A+E为正定矩阵,其中E为三阶单位矩阵。
选项
答案
证明:因为(A+E)
T
=A
T
+E=A+E,所以A+E为实对称矩阵。又因为A的特征值为1,1,0,所以A+E特征值为2,2,1,都大于0,因此A+E为正定矩阵。
解析
转载请注明原文地址:https://kaotiyun.com/show/yTk4777K
0
考研数学二
相关试题推荐
对离散型情形证明:(1)E(X+Y)=EX+EY.(2)EXY=EXEY
设f(x)在[0,1]上连续,取正值且单调减少,证明
求在抛物线y=x2上横坐标为3的点的切线方程.
在区问(-∞,+∞)内,方程|x|1/4+|x|1/2-cosx=0
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求矩阵A.
设A为3阶实对称矩阵,A的秩为2,且求A的所有特征值与特征向量;
已知二次型f(x1,x2,x3)=4x2-3x3+4x1x2-4x1x3+8x2x3.用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
已知二次型f(x1,x2,x3)=4x2-3x3+4x1x2-4x1x3+8x2x3.写出二次型f的矩阵表达式;
设4维向量组α1=(1+α,1,1,1)T,α2=(2,2+α,2,2)T,α3=(3,3,3+α,3)T,α4=(4,4,4,4+α)T,问口为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.求α的值;
随机试题
暗码通常适用于()等。
A.甘味B.苦味C.二者均是D.二者均非麦冬的药味是()
急性化脓性关节炎是类风湿性关节炎是
营业保费由______和______构成。( )
在英语学习中,学生在学习eve和ball后学习eyeball就比较容易,这种现象属于()。
以下不属于70年代中国重大历史事件的是:
水初流到石边时,还是不经意地涎着脸,_____,但石头却像没有耳朵似的,板着冷静的面孔,一点儿不理。于是水开始娇嗔起来了,她拼命向石头冲突过去,意欲夺路而过。填入划横线部分最恰当的一句是:
Evensensiblemendoabsurdthings.
对于大多数中国人来说,节假日期间景区人山人海,高速公路、城市道路拥堵(congestion),是促使他们家中度假的两大主要原因。
A、Listentotheweatherreport.B、Warmthefingers.C、Turnonthelights.D、Gooutside.B
最新回复
(
0
)