首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值,λ1=1,λ2=2,λ3=-2,且α1=(1,一1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵. (Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B.
设3阶实对称矩阵A的特征值,λ1=1,λ2=2,λ3=-2,且α1=(1,一1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵. (Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B.
admin
2016-10-26
22
问题
设3阶实对称矩阵A的特征值,λ
1
=1,λ
2
=2,λ
3
=-2,且α
1
=(1,一1,1)
T
是A的属于λ
1
的一个特征向量.记B=A
5
-4A
3
+E,其中E为3阶单位矩阵.
(Ⅰ)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
(Ⅱ)求矩阵B.
选项
答案
(Ⅰ)由Aα=λα有A
n
α=λ
n
α.那么,对于Aα
1
=λ
1
α
1
=α
1
,有 Bα
1
=(A
5
一4A
3
+E)α
1
=A
5
α
1
一4A
3
α
1
+α
1
=([*]+1)α
1
=-2α
1
. 因此,向量α
1
是矩阵B属于特征值λ=-2的特征向量. 类似地,对λ
2
=2,λ
3
=-2有:若Aα=λ
2
α,则Bα=([*]+1)α=α; 若Aβ=λ
3
β,则Bβ=([*]+1)β=β, 那么α,β是矩阵B属于特征值λ=1的特征向量.因α,β是矩阵A不同特征值的特征向量,因此它们线性无关.从而矩阵B的特征值是:一2,1,1,且矩阵B属于特征值λ=-2的特征向量是k
1
α
1
(k
1
≠0). 又由A是实对称矩阵知,B是实对称矩阵.那么B的属于特征值λ=1与λ=-2的特征向量应当相互正交.设矩阵B属于λ=1的特征向量α=(x
1
,x
2
,x
3
)
T
,则 x
1
-x
2
+x
3
=0. 解此方程组得基础解系α
2
=(1,1,0)
T
,α
3
=(一1,0,1)
T
.故矩阵B属于λ=1的特征向量是k
2
α
2
+k
3
α
3
(k
2
,k
3
不全为0). (Ⅱ)令P=(α
1
,α
2
,α
3
),有P
-1
BP=[*]那么 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/yUu4777K
0
考研数学一
相关试题推荐
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
试确定P的取值范围,使得y=x3-3x+p与x轴(1)有一个交点;(2)有两个交点;(3)有三个交点.
设一矩形面积为A,试将周长S表示为宽x的函数,并求其定义域。
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
差分方程yt+1-yt=t2t的通解为_______.
依题设,置信区间的长度为2[*]
[*]虑用高斯公式计算,但S不是封闭的,所以要添加辅助面.设所添加铺助面为S1:z=0(x2+y2≤4),法向量朝下,S与S1围成区域Ω,S与S1的法向量指向Ω的外部,在Q上用高斯公式得[*]用先二后一的求积顺序求三重积分:[*]其中Dx
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为ξ1=
极限=_________.
设ξ为f(x)=arctanx在[0,a]上使用微分中值定理的中值,则为().
随机试题
阅读苏轼《临江仙·夜归临皋》,然后回答下列小题。夜饮东坡醒复醉,归来仿佛三更。家童鼻息已雷鸣。敲门都不应,倚杖听江声。长恨此身非我有,何时忘却营营?夜阑风静觳纹平。小舟从此逝,江海寄余生。“长恨此身非我有,何时忘却营营?”一句表达了词人怎样的情感
红细胞生成应具备的条件是()。
A.血管平滑肌对儿茶酚胺的反应降低B.体内水潴留C.ACTH降低D.血糖水平升高用药物破坏动物胰岛β细胞后
补气养阴,清火生津,首选
A.枕左后位B.枕左横位C.枕右横位D.枕右后位E.臀位胎儿纵轴与母体纵轴平行,先露部宽大而软
A.凉血地黄汤B.润肠汤C.六磨汤D.止痛如神汤E.青蒿鳖甲汤
著名国际金融专家特里芬提出的确定一国国际储备量的指标是各国的外汇储备应大致相当于一国()个月的进口额。
按______键可以关闭窗口或退出应用程序;如果某个应用程序不再响应用户的操作,可以同时按______三个键。
执行下边的框图,若要使输出的结果为3,则输入的实数x值为()。
Cityofficialsareconsideringbuildingapathtogivethepublic______tothesite.
最新回复
(
0
)