首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶实对称矩阵,A的特征值是6,-6,0,其中λ=6与λ=0的特征向量分别是(1,a,1)T及(a,a+1,1)T,求矩阵A.
设A是3阶实对称矩阵,A的特征值是6,-6,0,其中λ=6与λ=0的特征向量分别是(1,a,1)T及(a,a+1,1)T,求矩阵A.
admin
2016-10-20
88
问题
设A是3阶实对称矩阵,A的特征值是6,-6,0,其中λ=6与λ=0的特征向量分别是(1,a,1)
T
及(a,a+1,1)
T
,求矩阵A.
选项
答案
因为A是实对称矩阵,属于不同特征值的特征向量相互正交(5.12),所以 1×a+a(a+1)+1×1=0[*]a=-1. 设属于λ=-6的特征向量是(x
1
,x
2
,x
3
)
T
,它与λ=6,λ=0的特征向量均正交,于是 [*] 解得(1,2,1)
T
是λ=-6的特征向量. 那么,[*]
解析
现在A的特征值已知,求矩阵4就转为应求出A的特征向量,一要确定a,一要求出λ=-6的特征向量.已知条件中实对称矩阵能给什么信息呢?
转载请注明原文地址:https://kaotiyun.com/show/yYT4777K
0
考研数学三
相关试题推荐
[*]
假设E,F是两个事件,(1)已知P(E)=0.4,P(F)=0.6,P(E∪F)=0.8,计算P(E|F)和P(F|E);(2)已知P(E)=0.3,P(F)=0.5,P(E|F)=0.4,计算P(E∩F),P(E∪F),P(F|E).
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
一袋中装有a个黑球,b个白球.先后两次从袋中各取一球(不放回).(1)已知第一次取出的是黑球,求第二次取出的仍是黑球的概率;(2)已知第二次取出的是黑球,求第一次取出的也是黑球的概率;(3)已知取出的两个球中有一个是黑球,求另
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
计算高斯积分其中,r=(x,xo)i+(y-yo)j+(z-zo)k,r=|r|,n是封闭曲面∑的外法向量,点Mo(xo,yo,zo)是定点,点M(x,y,z)是动点,研究两种情况:(1)Mo在∑的外部;(2)Mo在∑的内部.
计算下列第二类曲面积分:
(1)证明三个向量共面的充要条件是其中一个向量可以表示为另两个向量的线性组合.(2)设a=(ax,ay,az),b=(b,by,bz),且a×b≠0,证明:过点Mo(x,yo,zo),并且以a×b为法向的平面具有如下形式的参数方程:
设A是n阶矩阵,下列不是命题“0是矩阵A的特征值”的充分必要条件的是().
随机试题
骨肿瘤的生长方式
无菌技术操作原则中,下列哪项是错误的()。
某公司现有发行在外的普通股100万股,每股面值1元,资本公积300万元,未分配利润800万元,股票市价20元/股;若按10%的比例发放股票股利并按市价计算,公司资本公积的报表列示将为()万元。
实施控制测试与了解内部控制所采用的审计程序大体相同,主要区别在于了解内部控制所采取的审计程序中通常不包括重新执行。()
“应适合幼儿理解和接受能力”,这指的是幼儿科学教育内容必须具有()
以下选项中,关于事业单位人员养老保险制度改革的内容,错误的是()。
试述运动时血液循环功能的变化及其调节机制。
设数据结构B=(D,R),其中D={a,b,c,d,e,f}R={(f,a),(d,b),(e,d),(c,e),(a,c)}该数据结构为()。
WhyisMissBrowninthatoffice?
Opinionpollsarenowbeginningtoshowanunwillinggeneralagreementthat,whoeveristo【21】andwhateverhappensfromnowon,
最新回复
(
0
)