首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,证明α1+α2,α2+α3,α3+α1也是该方程组的一个基础解系.
已知α1,α2,α3是齐次线性方程组Ax=0的一个基础解系,证明α1+α2,α2+α3,α3+α1也是该方程组的一个基础解系.
admin
2016-10-20
50
问题
已知α
1
,α
2
,α
3
是齐次线性方程组Ax=0的一个基础解系,证明α
1
+α
2
,α
2
+α
3
,α
3
+α
1
也是该方程组的一个基础解系.
选项
答案
由A(α
1
+α
2
)=Aα
1
+Aα
2
=0+0=0知,α
1
+α
2
是齐次方程组Ax=0的解.类似可知α
2
+α
3
,α
3
+α
1
也是Ax=0的解. 若k
1
(α
1
+α
2
)+k
2
(α
2
+α
3
)+k
3
(α
3
+α
1
)=0,即 (k
1
+k
3
)α
1
+(k
1
+k
2
)α
2
+(k
2
+k
3
)α
3
=0, 因为α
1
,α
2
,α
3
是基础解系,它们是线性无关的,故 [*] 由于此方程组系数行列式D=[*]=2≠0,故必有k
1
=k
2
=k
3
=0,所以α
1
+α
2
,α
2
+α
3
,α
3
+α
1
线性无关. 根据题设,Ax=0的基础解系含有3个线性无关的向量,所以α
1
+α
2
,α
2
+α
3
,α
3
+α
1
是方程组Ax=0的基础解系.
解析
按基础解系的定义,要证三个方面:①α
1
+α
2
,α
2
+α
3
,α
3
+α
1
是解;②它们线性无关;③向量个数等于n-r(A).
转载请注明原文地址:https://kaotiyun.com/show/ygT4777K
0
考研数学三
相关试题推荐
假设E,F是两个事件,(1)已知P(E)=0.4,P(F)=0.6,P(E∪F)=0.8,计算P(E|F)和P(F|E);(2)已知P(E)=0.3,P(F)=0.5,P(E|F)=0.4,计算P(E∩F),P(E∪F),P(F|E).
一辆飞机场的交通车载有25名乘客,途经9个站,每位乘客都等可能在9个站中任意一站下车,交通车只在有乘客下车时才停车,求下列各事件的概率:(1)交通车在第i站停车;(2)交通车在第i站和第j站至少有一站停车;(3)交通车在第i站
设β,α1,α2线性相关,β,α2,α3线性无关,则().
设A,B是同阶正定矩阵,则下列命题错误的是().
一袋中装有a个黑球,b个白球.先后两次从袋中各取一球(不放回).(1)已知第一次取出的是黑球,求第二次取出的仍是黑球的概率;(2)已知第二次取出的是黑球,求第一次取出的也是黑球的概率;(3)已知取出的两个球中有一个是黑球,求另
设f(x)在[a,b]上可积,又,证明φ(x)是[a,b]上的连续函数.
设F(x+z,y+z)可微分,求由方程F(x+z,y+z)-1/2(x2+y2+z2)=2确定的函数z=z(x.y)的微分出与偏导数
设有方程xn+nx-1=0,其中n为正整数,证明此方程存在唯一正实根xn,并证明当a>1时,级数收敛.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
随机试题
嫌犯小高在社会工作者的帮助下,决定出狱后找个工作,本本分分地赚钱;()负责对有需求的社区服刑人员进行职业技能培训,并将其纳入本地职业技能培训总体规划。符合条件的社区服刑人员可以申请享受相关就业扶持政策,接受公共就业服务机构提供的职业指导
降结肠癌最早出现的表现中,较常见的是
A、硝酸甘油B、普萘洛尔C、维拉帕米D、硝苯地平E、双嘧达莫直接扩张血管,加快心率()
律师建议刘某可向下列单位中的哪些单位索赔()。本案中销售方侵犯了刘某什么权利()。
贷款合同的制定原则为()
【背景材料(大意)】受特殊计划生育政策、快速城市化和工业化进程中生育意愿迅速变化等多方面因素影响,我国正在进入快速的老龄化过程。截至2013年底,我国60周岁及以上人口20243万人,占总人口的14.9%,65周岁及以上人口13161万人,占总人口的
某一品牌或产品大类内由尺码、价格、外观及其他属性来区别的具体产品是指()。
律诗是属于下列四项中的________。
DearMs.Marshall,Wearehappytoinformyouthatyourapplicationforabusinesslicense______approved.Thebusinesslicensew
TheconstructionoftheWhiteHousebeganin1792,butitwasnotcompleteduntiltenyearslater.EveryAmericanpresidentlive
最新回复
(
0
)