首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元齐次线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为志k1(0,1,1,0)T+k2(-1,2,2,1)T. (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解
设4元齐次线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为志k1(0,1,1,0)T+k2(-1,2,2,1)T. (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解
admin
2017-06-26
32
问题
设4元齐次线性方程组(Ⅰ)为
,又已知某齐次线性方程组(Ⅱ)的通解为志k
1
(0,1,1,0)
T
+k
2
(-1,2,2,1)
T
.
(1)求线性方程组(Ⅰ)的基础解系;
(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解;若没有,则说明理由.
选项
答案
(1)(0,0,1,0)
T
,(-1,1,0,1)
T
. (2)有非零公共解,所有非零公共解为c(-1,1,1,1)
T
(c为任意非零常数).将(Ⅱ)的通解代入方程组(Ⅰ),有[*],解得k
1
=-k
2
,当k
1
=-k
2
≠0时,则向量k
1
(0,1,1,0)
T
+k
2
(-1,2,2,1)
T
=k
2
[(0,-1,-1,0)
T
+(-1,2,2,1)
T
]=k
2
(-1,1,1,1)
T
满足方程组(Ⅰ)(显然是(Ⅱ)的解),故方程组(Ⅰ)与(Ⅱ)有非零公共解,所有非零公共解是c(-1,1,1,1)
T
(c为任意非零常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/yjH4777K
0
考研数学三
相关试题推荐
设a1,a2,…,as均为n维列向量,A是m×n矩阵,则下列选项正确的是().
设二阶常系数微分方程y’’+ay’+βy=ye2x有一个特解为y=e2x+(1+x)ex,试确定a、β、γ和此方程的通解.
设f(x)在区间[0,1]上可微,且满足条件f(1)=2∫01/2xf(x)dx,试证:存在ξ∈(0,1),使f(ξ)+ξf’(ξ)=0.
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则().
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(Ⅰ)存在ξ∈(0,1),使得f(ξ)=1-ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.
利用曲线积分计算柱面x2/5+y2=1位于y≥0,z≥0的部分被平面y=z所截一块的面积.
求:微分方程y〞+y=-2x的通解.
设某产品的成本函数为c=aq2+bq+c,需求函数为a=1/e(d-p),其中C为成本,q为需求量(即产量),p为单价,a,b,c,d,e都是正的常数,且d>b,求:(Ⅰ)利润最大时的产量及最大利润;(Ⅱ)需求对价格的弹性;(Ⅲ)需求对价格弹性的绝对
通解为C1ex+C2x的微分方程是_____.
设事件A,B,C是一个完备事件组,即它们两两互不相容且其和为Ω,则下列结论中一定成立的是
随机试题
未经批准擅自开办医疗机构行医应承担的行政责任主要是( )
《长恨歌》中“宛转蛾眉马前死”的地点是()
A.病原体被消灭或排出体外B.病原体携带状态C.隐性感染D.潜在性感染E.显性感染感染病原体后不出现临床表现,但产生了特异性免疫()
接种麻疹疫苗的常见反应为
国外项目管理的应用首先在()的工程管理中,而后逐步推广。
阅读下面的文章,完成后面各题。美丽如初①月色皎洁,一如闪亮的白绸,宁静而安详地弥漫。我握着母亲的手站在街口,等放晚学的弟弟归家。并不冷,然而街静人空,我等得焦急不耐,母亲
尽管近年来我国引进不少人才,但真正顶尖的领军人才还是凤毛麟角。就全球而言,人才特别是高层次人才紧缺已是常态化、长期化趋势。某专家由此认为,未来10年,美国、加拿大、德国等国对高层次人才的争夺将进一步加剧。发展中国家的高层次人才紧缺状况更甚于发达国家。因此我
外国教会为帝国主义侵略中国制造舆论,办得较早的外文期刊是()。
Whileweneedtoshowyoungwomenhowtoprotectthemselves,thesefindingsalsodemonstratestronglythatweneedtohelpyoung
Themajorcauseof"forgetting"isfailuretolearnthematerial【B1】______inthefirstplace.However,weforgetata【B2】______r
最新回复
(
0
)