首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元齐次线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为志k1(0,1,1,0)T+k2(-1,2,2,1)T. (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解
设4元齐次线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为志k1(0,1,1,0)T+k2(-1,2,2,1)T. (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解
admin
2017-06-26
87
问题
设4元齐次线性方程组(Ⅰ)为
,又已知某齐次线性方程组(Ⅱ)的通解为志k
1
(0,1,1,0)
T
+k
2
(-1,2,2,1)
T
.
(1)求线性方程组(Ⅰ)的基础解系;
(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解;若没有,则说明理由.
选项
答案
(1)(0,0,1,0)
T
,(-1,1,0,1)
T
. (2)有非零公共解,所有非零公共解为c(-1,1,1,1)
T
(c为任意非零常数).将(Ⅱ)的通解代入方程组(Ⅰ),有[*],解得k
1
=-k
2
,当k
1
=-k
2
≠0时,则向量k
1
(0,1,1,0)
T
+k
2
(-1,2,2,1)
T
=k
2
[(0,-1,-1,0)
T
+(-1,2,2,1)
T
]=k
2
(-1,1,1,1)
T
满足方程组(Ⅰ)(显然是(Ⅱ)的解),故方程组(Ⅰ)与(Ⅱ)有非零公共解,所有非零公共解是c(-1,1,1,1)
T
(c为任意非零常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/yjH4777K
0
考研数学三
相关试题推荐
设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则().
设线性方程组(Ⅰ)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;(Ⅱ)设a1=a3=k,a2=a4=-k(k≠0),且已知β1,β2是该方程组的两个解,其中β1=,写出此方程组的通解.
设f(x)是连续函数,且,则F’(x)等于().
假设曲线ι1=1-x2(0≤x≤1)与x轴,y轴所围成区域被曲线ι2:y=ax2分为面积相等的两部分,其中a是大于零的常数,试确定a的值.
设函数f(x)在[0,1]上连续,(0,1)内可导,且3∫2/31f(x)dx=f(x),证明在(0,1)内存在一点,使f’(C)=0.
设总体X的概率分布为其中参数θ未知且从总体X中抽取一个容量为8的简单随机样本,其8个样本值分别是1,0,1,一1,1,1,2,1.试求:θ的矩估值;
已知三元二次型xTAx的平方项系数均为0,设α=(1,2,一1)T且满足Aα=2α.求该二次型表达式;
设其中f(u,v)是连续函数,则dz=_________.
对数曲线y=lnx上哪一点处的曲率半径最小?求出该点处的曲率半径.
n+1阶行列式=_____,其中ai≠0(i,2,…,n).
随机试题
阅读朱自清《背影》一文中的片断,然后回答下列小题。走到那边月台,须穿过铁道。须跳下去又爬上去。父亲是一个胖子,走过去自然要费事些。我本来要去的,他不肯,只好让他去。我看见他戴着黑布小帽,穿着黑布大马褂,深青布棉袍,蹒跚地走到铁道边,慢慢探身下去
焦虑恐惧,不敢独处一室的主要原因是
与X线照片对比度无关的因素是
在我国,组织和推动会计职业道德建设,并对相关工作依法行政的机构是()。
简述皮亚杰的儿童道德发展阶段论。
为关爱老人、服务老人,区妇联准备组建一支“巾帼志愿服务队”,你作为妇联工作人员负责此事,你会怎么组织?
Thenextdecadecouldseecommutersspeedingtoworkatabout300milesperhouraboardmagneticlevitationvehicles,according
下列关于运算符重载的叙述中,正确的是
Whatarethespeakerstalkingabout?
"Wethoughttherewasafutureinnuclearpowerwhennooneelsebelievedinit,"saysAnneLauvergeon,chiefexecutiveofAreva
最新回复
(
0
)