首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数f(x,y)=x2+8y2一4x2y2在区域D={(x,y)|x2+4y2≤4,y≥0}上的最大值与最小值.
求函数f(x,y)=x2+8y2一4x2y2在区域D={(x,y)|x2+4y2≤4,y≥0}上的最大值与最小值.
admin
2017-10-23
69
问题
求函数f(x,y)=x
2
+8y
2
一4x
2
y
2
在区域D={(x,y)|x
2
+4y
2
≤4,y≥0}上的最大值与最小值.
选项
答案
首先求f(x,y)在D内其驻点处的函数值.令 [*] 因在D内y>0,从而可解出f(x,y)在D内有且只有两个驻点[*]。计算可得 [*] 其次求f(x,y)在D的边界[*]={(x,y)||x|≤2,y=0}上的最大值与最小值.把y=0代入f(x,y)的表达式可得f(x,0)=x
2
,不难得出在[*]上f(x,y)的最小值为f(0,0)=0,最大值为f(一2,0)=f(2,0)=4. 最后求f(x,y)在D的边界[*]={(x,y)|x
2
+4y
2
=4,y≥0}上的最大值与最小值.把y=[*]代入f(x,y)的表达式可得一元函数 [*] =x
2
+(2一x
2
)(4一x
2
)=x
4
—5x
2
+8. 令h’(x)=4x
3
一10x=4x(x
2
一[*]内共有三个驻点(0,1),[*],函数f(x,y)在这三个驻点处的函数值分别是 [*] 又因f(x,y)在[*]的端点(一2,0)与(2,0)处的函数值为f(一2,0)=f(2,0)=4.比较即知f(x,y)在[*]. 比较以上各值可知f(x,y)在D上的最大值为f(0,1)=8,最小值为f(0,0)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/yoX4777K
0
考研数学三
相关试题推荐
设随机变量X,Y相互独立且都服从标准正态分布,令U=X2+Y2.求:(1)fU(u);(2)P{U>D(U)|U>E(U)).
设(X,Y)的联合概率密度为.求:(1)(X,Y)的边缘密度函数;(2)Z=2X—Y的密度函数.
求微分方程一cosxsin2y=siny的通解.
求微分方程xy’=的通解.
设f(x)为连续函数,证明:
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是().
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
设A为n阶矩阵,证明:r(A)=1的充分必要条件是存在,2维非零列向量α,β,使得A=αβT.
设A为m阶正定矩阵,B为m×n实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
随机试题
消费者在购买、使用商品和接受服务时享有()不受损害的权利。
绝大多数真核生物mRNA54端有()。
患儿,男性,3岁。上楼梯时,其母亲向上牵拉右上肢,患儿哭叫,诉肘部疼痛,不肯用右手取物,最可能的诊断是
下列设备中,属于有线电视系统设备的是()。
地陪首次沿途导游的主要内容是()。
对流出员工的跟踪调查可以由()来完成。
根据《治安管理处罚法》的规定,违反治安管理的行为主要由( )构成。
求学者如果孜孜于衣食居住的安适,一定谈不上好学。同样,好学的目的也不是为了__________,心灵之养甚于居养之安。学习的目的是成为“有道”之人,名闻利养并非先务。这不是__________物质,而是强调学习就是学习,不要附带上物质目的。填入划横线部分最
①然而,它们却不仅没有患上糖尿病或者高血压等代谢疾病②反而可以在缺水乏食、昼夜温差极大的沙漠中生存下来,成为“沙漠之舟”③它们生存在环境最恶劣的沙漠和半沙漠地区,每餐食用大量食盐.并摄取大量脂肪④在古老的丝绸之路上,双峰骆驼曾是中西贸易文化交流的使者
设x→0时ax2+bx+c—cosx是比x2高阶的无穷小,其中a,b,c为常数,则()
最新回复
(
0
)