设f(x)在(-1,1)内具有二阶连续导数,且f’’(x)≠0。证明: (Ⅰ)对于任意的x∈(-1,0)∪(0,1),存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立; (Ⅱ)

admin2018-11-22  27

问题 设f(x)在(-1,1)内具有二阶连续导数,且f’’(x)≠0。证明:
(Ⅰ)对于任意的x∈(-1,0)∪(0,1),存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;
(Ⅱ)

选项

答案(Ⅰ)由拉格朗13中值定理,对任意的x∈(-1,1),x≠0,存在θ(x)∈(0,1)使 f(x)=f(0)+xf’(θ(x)x)。 又由f’’(x)连续且f’’(x)≠0知,f’’(x)在(-1,1)不变号,则f’(x)在(-1,1)严格单调,θ唯一。 (Ⅱ)对f’(θx)使用f’’(0)的定义。由(Ⅰ)中的式子,则有 [*] 解出θ,令x→0取极限得 [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/z6M4777K
0

最新回复(0)