首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-1,1)内具有二阶连续导数,且f’’(x)≠0。证明: (Ⅰ)对于任意的x∈(-1,0)∪(0,1),存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立; (Ⅱ)
设f(x)在(-1,1)内具有二阶连续导数,且f’’(x)≠0。证明: (Ⅰ)对于任意的x∈(-1,0)∪(0,1),存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立; (Ⅱ)
admin
2018-11-22
48
问题
设f(x)在(-1,1)内具有二阶连续导数,且f’’(x)≠0。证明:
(Ⅰ)对于任意的x∈(-1,0)∪(0,1),存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;
(Ⅱ)
选项
答案
(Ⅰ)由拉格朗13中值定理,对任意的x∈(-1,1),x≠0,存在θ(x)∈(0,1)使 f(x)=f(0)+xf’(θ(x)x)。 又由f’’(x)连续且f’’(x)≠0知,f’’(x)在(-1,1)不变号,则f’(x)在(-1,1)严格单调,θ唯一。 (Ⅱ)对f’(θx)使用f’’(0)的定义。由(Ⅰ)中的式子,则有 [*] 解出θ,令x→0取极限得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/z6M4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]上连续,在(0,1)内可导,且=2.证明:(Ⅰ)存在c∈(0,1),使得f(c)=0;(Ⅱ)存在ξ∈(0,1),使得f"(ξ)=f(ξ);(Ⅲ)存在η∈(0,1),使得f"(η)一3f’(η)+2f(η)=0.
当x→0时,无穷小的阶数最高的是().
设A,B均为n阶矩阵,且AB=A+B,则①若A可逆,则B可逆;②若B可逆,则A+B可逆;③若A+B可逆,则AB可逆;④A-E恒可逆。上述命题中,正确的个数为()
微分方程y"一4y=x+2的通解为().
求一个正交变换把二次曲面的方程3χ2+5y2+5z2+4χy-4χz-10yz=1化成标准方程.
某流水生产线上每个产品不合格的概率为p(0<p<1),各产品合格与否相互独立,当出现一个不合格产品时即停机检修,设开机后第一次停机时已生产了的产品个数为X,求E(X)和D(X)。
设函数f(x)在x=x0处存在f′+(x0)与f′-(x0),但f′+(x0)≠f′-(x0),说明这一事实的几何意义.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f()=1,f(1)=0.证明:(1)存在η∈(,1),使得f(η)=η;(2)对任意的k∈(—∞,+∞),存在ξ∈(0,η),使得f’(ξ)一k[f(ξ)一ξ]=1.
设f(x)在x=0处二阶导数连续,且试求f(0),f’(0),f’’(0)以及极限
设A,B均是n阶矩阵,下列命题中正确的是
随机试题
"Mum,whatdoesitmeanwhensomeonetellsyouthattheyhaveaskeletoninthecloset?"Jessicaasked."Askeletonintheclose
Bornin1830inruralAmherst,Massachusetts,EmilyDickinsonspentherentirelifeinthehouseholdofherparents.Between185
不属于人身保险合同的是()
关于持有待售资产的会计处理,下列说法中正确的有()。
中国采取的小是民主共和国联邦制度,而是民旅区域自治制度。实践证明,这一制度有利于()。
李某在山上劳作,遇到邻村的妇女王某路过,便拿着镰刀欲对王某实施抢劫,不料被王某夺下镰刀,向其头上猛砍一刀,当即将李某杀死。王某的行为属于正当防卫。()
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。()
下列法律关系中的法律事实属于法律行为的是()。
小张和小赵从事同样的工作,小张的效率是小赵的1.5倍。某日小张工作几小时后小赵开始工作,小赵工作了1小时之后,小张已完成的工作量正好是小赵的9倍。再过几个小时,小张已完成的工作量正好是小赵的4倍?()
AudienceAwarenessofWritingI.Introduction—audiencereferstoreadersofwrittenmaterials—thecontent,structureandthe
最新回复
(
0
)