首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有任意两个n维向量组α1,α2,…,αm和β1,β2,…βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1 一k1)β1+…+(λm一 km)βm=0,则
设有任意两个n维向量组α1,α2,…,αm和β1,β2,…βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1 一k1)β1+…+(λm一 km)βm=0,则
admin
2019-02-01
52
问题
设有任意两个n维向量组α
1
,α
2
,…,α
m
和β
1
,β
2
,…β
m
,若存在两组不全为零的数λ
1
,λ
2
,…,λ
m
和k
1
,k
2
,…,k
m
,使(λ
1
+k
1
)α
1
+…+(λ
m
+k
m
)α
m
+(λ
1
一k
1
)β
1
+…+(λ
m
一 k
m
)β
m
=0,则
选项
A、α
1
,…,α
m
和β
1
,…,β
m
都线性相关.
B、α
1
,…,α
m
和β
1
,…,β
m
都线性无关.
C、α
1
+β
1
,…,α
m
+β
m
,α
1
一 β
1
,…,α
m
一 β
m
线性无关.
D、α
1
+β
1
,…,α
m
+β
m
,α
1
一 β
1
,…,α
m
一β
m
线性相关.
答案
B
解析
由题设等式,有λ
1
(α
1
+β
1
)+…+λ
m
(α
m
+β
m
)+k
1
(α
1
一β
1
)+…+k
m
(α
m
一β
m
)=0,因λ
1
,…,λ
m
,k
1
,…,k
m
不全为零,由上式知向量组α
1
+β
1
,…,α
m
+β
m
,α
1
一 β
1
,…,α
m
一 β
m
线性相关,只有(C)正确.
转载请注明原文地址:https://kaotiyun.com/show/nrj4777K
0
考研数学二
相关试题推荐
求极限:.
=_____________.
已知n(n≥3)阶实矩阵A=(aij)n×n满足条件:(1)aij=Aij(i,j=1,2,…,n),其中Aij是aij的代数余子式;(2)a11≠0.求|A|.
设有一正椭圆柱体,其底面的长、短轴分别为2a,2b,用过此柱体底面的短轴且与底面成α角(0<α<)的平面截此柱体,得一楔形体(如图1.3—2),求此楔形体的体积V.
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:(1)a为何值时,向量组α1,α2,α3,α4诹线性相关;(2)a为何值时,向量组α1,α2,α3,α4线
求下列积分:.
以下4个命题①设f(x)是(一∞,+∞)上连续的奇函数,则∫一∞+∞f(x)dx必收敛,且∫一∞+∞f(x)dx=0;②设f(x)在(一∞,+∞)上连续,且∫一RRf(x)dx存在,则∫一∞+∞f(x)dx必收敛,且∫一∞+∞f(x)dx=∫一RRf(
设x→a时f(x)与g(x)分别是x一a的n阶与m阶无穷小,则下列命题中,正确的个数是()①f(x)g(x)是x一a的n+m阶无穷小;②若n>m,则是x一a的n—m阶无穷小;③若n≤m,则f(x)+g(x)是x—a的n阶无穷小。
设f(x)在x=a处可导,且f(a)=1,f’(a)=3,求数列极限ω=
设且f’’(x)>0,证明f(x)>x(x≠0).
随机试题
《证券法》主要修订的内容包括()。Ⅰ.完善了上市公司的监管制度,提高上市公司质量Ⅱ.加强对证券公司监管,防范和化解证券市场风险Ⅲ.加强对投资者特别是中小投资者权益的保护力度,建立证券投资者保护基金制度Ⅳ.对分业经营和管理、现货交
什么是生理依赖性和精神依赖性?哪些药物易产生依赖性?
A.消食化滞,理气和胃B.健脾和胃,消食止泻C.消食导滞,清热祛湿D.消食导滞,攻积泄热E.温阳健脾,和胃消食保和丸的功效是
以下说法正确的是()
一项工程项目实施完成后,很难推倒重来,这体现了工程建设具有()。
下列关于带电体灭火的操作方法正确的是()。
招标结束后,招标人应将( )退还给未中标的投标人。
心理学家们曾做过这样一个实验:在给小小的缝衣针穿线的时候,你越是全神贯注地努力,线越不容易穿入。在科学界,这种现象被称为“目的颤抖”,也叫“穿针心理”,就是目的性越强就越不容易成功。根据上述定义,下列各项没有体现“穿针心理”的是:
1947年,台湾省人民为反抗国民党当局的暴政举行了()。
Givemeyourtelephonenumber______Ineedyourhelp.
最新回复
(
0
)