首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有任意两个n维向量组α1,α2,…,αm和β1,β2,…βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1 一k1)β1+…+(λm一 km)βm=0,则
设有任意两个n维向量组α1,α2,…,αm和β1,β2,…βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1 一k1)β1+…+(λm一 km)βm=0,则
admin
2019-02-01
62
问题
设有任意两个n维向量组α
1
,α
2
,…,α
m
和β
1
,β
2
,…β
m
,若存在两组不全为零的数λ
1
,λ
2
,…,λ
m
和k
1
,k
2
,…,k
m
,使(λ
1
+k
1
)α
1
+…+(λ
m
+k
m
)α
m
+(λ
1
一k
1
)β
1
+…+(λ
m
一 k
m
)β
m
=0,则
选项
A、α
1
,…,α
m
和β
1
,…,β
m
都线性相关.
B、α
1
,…,α
m
和β
1
,…,β
m
都线性无关.
C、α
1
+β
1
,…,α
m
+β
m
,α
1
一 β
1
,…,α
m
一 β
m
线性无关.
D、α
1
+β
1
,…,α
m
+β
m
,α
1
一 β
1
,…,α
m
一β
m
线性相关.
答案
B
解析
由题设等式,有λ
1
(α
1
+β
1
)+…+λ
m
(α
m
+β
m
)+k
1
(α
1
一β
1
)+…+k
m
(α
m
一β
m
)=0,因λ
1
,…,λ
m
,k
1
,…,k
m
不全为零,由上式知向量组α
1
+β
1
,…,α
m
+β
m
,α
1
一 β
1
,…,α
m
一 β
m
线性相关,只有(C)正确.
转载请注明原文地址:https://kaotiyun.com/show/nrj4777K
0
考研数学二
相关试题推荐
计算Dn=.
设A是n×n矩阵,X是任意的n维列向量,B是任意的n阶方阵,则下列说法错误的是()
证明:若A为m×n矩阵,B为n×p矩阵,则有r(AB)≥r(A)+r(B)一n.特别地,当AB=O时,有r(A)+r(B)≤n.
设f(x)在[0,]上具有连续的二阶导数,且f’(0)=0.证明:存在ξ,η,ω∈ηsin2ξf"(ω).
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值
证明:曲线上任一点的切线的横截距与纵截距之和为2.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
当x→∞时,下列变量中,哪些是无穷小量?哪些是无穷大量?哪些既非无穷小量也非无穷大量?
以下4个命题,正确的个数为()①设f(x)是(一∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞(x)dx=0;②设f(x)在(一∞,+∞)上连续,③若∫-∞+∞f(x)dx与∫-∞+∞g(x)dx都发散,则
设且|A|=m,则|B|=()
随机试题
对膀胱无尿之癃闭危证,可用哪组药高位保留灌肠
男孩,2岁。自幼咳嗽、气急,生长发育落后。查体:胸骨左缘上方可闻及收缩期杂音。心导管检查发现肺动脉血氧含量高于右心室。最可能的诊断是
六腑中与肺相表里的是()。
有关规章的决定和公布,下列说法正确的是:(2014年卷二97题,不定项)
按照监理合同示范文本的规定,下列关于有异议的监理酬金支付的说法中,正确的是()
下列有关税法解释的表述中,正确的是()。
产品线策略的主要内容是()决策。
实收资本的金额和企业注册资本的金额总是相等的。()
利用样本数据绘制单值一极差控制图X一R,经计算。下列关于X--Rs图说法不正确的是()。
诚信,是指诚实守信,能够【131】承诺而取得他人信任。诚信是人类社会基本的道德【132】,也是一种非常宝贵的资源。先哲孔子早就提醒人们:“人而无信,不知其可也”,“民无信不立”。北宋神宗时的宰相王安石有诗日:“一言为重百斤轻”,也是极言诚信的重要
最新回复
(
0
)