首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为[-a,a]上的连续的偶函数且f(x)>0.令F(x)=∫-aa|x-t|f(t)dt (Ⅰ)证明:F’(x)单调增加. (Ⅱ)当x取何值时,F(x)取最小值? (Ⅲ)当F(x)的最小值为f(a)-a2一1时.求函数f(x).
设f(x)为[-a,a]上的连续的偶函数且f(x)>0.令F(x)=∫-aa|x-t|f(t)dt (Ⅰ)证明:F’(x)单调增加. (Ⅱ)当x取何值时,F(x)取最小值? (Ⅲ)当F(x)的最小值为f(a)-a2一1时.求函数f(x).
admin
2020-08-04
132
问题
设f(x)为[-a,a]上的连续的偶函数且f(x)>0.令F(x)=∫
-a
a
|x-t|f(t)dt
(Ⅰ)证明:F’(x)单调增加.
(Ⅱ)当x取何值时,F(x)取最小值?
(Ⅲ)当F(x)的最小值为f(a)-a
2
一1时.求函数f(x).
选项
答案
(Ⅰ)F(x)=∫
-a
a
|x-t|f(t)dt=∫
-a
x
(x一t)f(t)dt+∫
x
a
(t一x)f(t)dt=x∫
-a
x
f(t)dt—∫
-a
x
tf(t)dt+∫
-a
-a
tf(t)dt—x∫
x
a
f(t)dt=x∫
-a
x
f(t)dt—∫
-a
x
tf(t)dt—∫
a
x
tf(t)dt+x∫
a
x
f(t)dt,F’(x)=∫
-a
x
f(t)dt+xf(x)一xf(x)一xf(x)+∫
-a
a
f(t)dt+xf(x) =∫
-a
a
f(t)dt—∫
x
a
f(t)dt,因为F"(x)=2f(x)>0,所以F’(x)为单调增加的函数. (Ⅱ)因为F’(0)=∫
-a
0
f(x)dx—∫
0
a
f(x)dx且f(x)为偶函数,所以F,(0)=0,又因为F"(0)>0,所以x=0为F(x)的唯一极小点,也为最小点. 故最小值为F(0)=∫
-a
a
|t|f(t)dt=2∫
0
a
f(t)dt (Ⅲ)由2∫
0
a
tf(t)dt=f(a)-a
2
一1两边求导得 2af(a)=f’(a)一2a,于是f’(x)一2xf(x)=2x解得f(x)=[∫2xe
∫-2xdx
dx+C]e
-∫-2xdx
=Ce
x
一1,在2∫
0
a
tf(t)dt=∫(a)一a
2
一1中令a=0得f(0)=1,则C=2,于是f(x)=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/zHx4777K
0
考研数学三
相关试题推荐
求.
行列式=____________.
(01年)设总体X~N(0,22),而X1,X2,…X15是来自总体X的简单随机样本,则随机变量Y=服从_______分布,参数为_______.
曲线tan(x+y+)=ey在点(0,0)处的切线方程为________。
设A,B是两个随机事件,且P(A)+P(B)=0.8,P(A+B)=0.6,则=________.
设总体X的概率密度为X1,X2,…,Xn是来自X的样本,则未知参数θ的最大似然估计值为_________.
已知事件A、B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为________。
设二元函数z=xex+y+(x+1)ln(1+y),则dz|(1,0)=__________.
设随机事件A与B互不相容,0<P(A)<1,0<P(B)<1,记X与Y的相关系数为ρ,则()
随机试题
心智技能
A.贫血和出血程度一致B.贫血和出血程度不一致C.有贫血而无出血D.有出血而无贫血溶血性贫血
A.70μW/cm2B.80μW/cm2C.90μW/cm2D.100μW/cm2E.180μW/cm2使用中红外线灯管的辐照强度不得低于()
A.运动性蛋白尿B.微量白蛋白尿C.大量白蛋白尿D.体位性蛋白尿E.组织性蛋白尿早期糖尿病肾病
“中精之腑”指的是
在工程建设实施阶段,质量监督机构监督的对象包括()等单位。[2009年真题]
()是应用文主旨经常使用的表现方法。
相对于“学者”而言,“评论家”常常会给人一种特定的印象:短平快的犀利文风,敏感度极高,对作品的形式、技巧、风格、流派如数家珍;但同时也会显出“浮躁”的所谓“评论家”做派,凭印象感觉率性发声,缺少严格的学理支撑,从而坠人肤浅的窠臼。相对于扎实的考史订伪的学者
顺从是指互动中的一方自愿或主动地调整自己的行为,按另一方的要求行事,即一方服从另一方。顺应的含义比顺从更广泛,除了有顺从的含义外,它还指互动的双方或各方都调整自己的行为,以实现互相适应。根据上述定义,下列行为属于顺应的是()。
OverthepastdecadeoneprimaryfunctionoftheWorldBankhasbeen______.Wecanlearnfromthepassagethat______.
最新回复
(
0
)