首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)连续,存在极限.证明: (Ⅰ)设A<B,则对∈(-∞,+∞),使得f(ξ)=μ; (Ⅱ)f(x)在(-∞,+∞)上有界.
设f(x)在(-∞,+∞)连续,存在极限.证明: (Ⅰ)设A<B,则对∈(-∞,+∞),使得f(ξ)=μ; (Ⅱ)f(x)在(-∞,+∞)上有界.
admin
2016-10-20
68
问题
设f(x)在(-∞,+∞)连续,存在极限
.证明:
(Ⅰ)设A<B,则对
∈(-∞,+∞),使得f(ξ)=μ;
(Ⅱ)f(x)在(-∞,+∞)上有界.
选项
答案
利用极限的性质转化为有界区间的情形. (Ⅰ)由[*]=A<μ及极限的不等式性质可知,[*]使得f(X
1
)<μ. 由[*]使得f(X
2
)>μ.因f(x)在[X
1
,X
2
]连续,f(X
1
)<μ<f(X
2
),由连续函数介值定理知[*](-∞,+∞),使得f(ξ)=μ. (Ⅱ)因[*],由存在极限的函数的局部有界性定理可知,[*],使得当x∈(-∞,X
1
)时f(x)有界;[*](>X
1
),使得当x∈(X
2
,+∞)时f(x)有界.又由有界闭区间上连续函数的有界性定理即可知,f(x)在[X
1
,X
2
]上有界.因此f(x)在(-∞,+∞)上有界.
解析
转载请注明原文地址:https://kaotiyun.com/show/zST4777K
0
考研数学三
相关试题推荐
假设E,F是两个事件,(1)已知P(E)=0.4,P(F)=0.6,P(E∪F)=0.8,计算P(E|F)和P(F|E);(2)已知P(E)=0.3,P(F)=0.5,P(E|F)=0.4,计算P(E∩F),P(E∪F),P(F|E).
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
(1)第一类曲线积分的积分弧L是_________的(定向、不定向);利用L的参数方程将这个积分化为定积分时,下限α必须____________上限β.(2)第二类曲线积分的积分弧L是____________的(定向、不定向);利用L的参数方程将这个积分
设水以常速(即单位时间注入的水的体积为常数)注入图2.7所示的罐中,直至将水罐注满.画出水位高度随时问变化的函数y=y(t)的图形(不要求精确图形,但应画出曲线的凹凸方向并表示出拐点).
试求正数λ的值,使得曲面xyz=λ与曲面在某一点相切.
设常数a>0,则级数().
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解必是
设f(t)连续并满足f(t)=cos2t+f(s)sinsds,求f(t).
随机试题
A.阴阳B.气血C.两者均是D.两者均非
A.黄连阿胶汤B.天王补心丸C.滋水清肝饮D.六味地黄丸E.琥珀多寐丸(2003年第87,88题)治疗郁证阴虚火旺者,应首选()
利率期货诞生于20世纪70年代中期。()
产业布局政策一般遵循的原则有()。
实行对外开放,发展对外经济关系,从根本上说是( )的客观要求。
六安市可以分为哪几个区?()
决定教育永恒性的是教育的()。
为做好治安防范工作,下列公安民警给出的建议中,属于从人防角度入手的有()。
用蒸馏麦芽渣提取的酒精作为汽油的替代品进入市场,使得粮食市场和能源市场发生了前所未有的直接联系。到1995年,谷物作为酒精的价值已经超过了作为粮食的价值。西方国家已经或正在考虑用从谷物提取的酒精来替代一部分进口石油。如果上述断定为真,则对于那些已经用从谷物
A、Themanregretsbeingabsent-minded.B、Thewomansavedthemansometrouble.C、Themanplacedthereadinglistonadesk.D、Th
最新回复
(
0
)