首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,α0≠0,满足Aα0=0,向量组α1,α2满足Aα1=α2,A2α2=α2.证明α0,α1,α2线性无关.
设A为n阶矩阵,α0≠0,满足Aα0=0,向量组α1,α2满足Aα1=α2,A2α2=α2.证明α0,α1,α2线性无关.
admin
2018-06-27
48
问题
设A为n阶矩阵,α
0
≠0,满足Aα
0
=0,向量组α
1
,α
2
满足Aα
1
=α
2
,A
2
α
2
=α
2
.证明α
0
,α
1
,α
2
线性无关.
选项
答案
用定义证明.即要说明当c
1
,c
2
,c
3
满足c
1
α
0
+c
2
α
1
+c
3
α
2
=0时它们一定都是0. 记此式为(1)式,用A乘之,得 c
2
α
0
+c
3
Aα
2
=0 (2) 再用A乘(2)得c
3
α
0
=0.由α
0
≠0,得c
3
=0.代入(2)得c
2
=0.再代入(1)得c
1
=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/zYk4777K
0
考研数学二
相关试题推荐
计算二重积分,其中D是由曲线和直线y=-x围成的区域.
设曲线方程为y=e-x(x≥0).(1)把曲线y=e-x(x≥0),x轴,y轴和直线x=ξ(ξ>0)所围成平面图形绕x轴旋转一周,得一旋转体,求此旋转体的体积V(ξ),求满足的a;(2)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的
设A,B为n阶矩阵,满足等式AB=0,则必有
设3阶矩阵A满足Aαi=iαi(i=1,2,3),其中列向量α1=(1,2,2)T,α2=(2,-2,1)T,α3=(-2,-1,2)T,试求矩阵A.
已知齐次线性方程组其中.试讨论a1,a2,…,an和b满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,0为坐标原点,若梯形OCMA的面积与曲边三角形CBM的面积之和为,求f(x)的表达式.
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A*一6E的秩.
以y1=excos2x,y2=exsin2x与y3=e-x为线性无关特解的三阶常系数齐次线性微分方程是
设f(x,y)=讨论函数f(x,y)在点(0,0)处的连续性与可偏导性.
随机试题
Iftheonlineserviceisfreethenyouaretheproduct,technicianssay.GoogleandFacebookmakea【C1】________collectingperson
脂肪是人体能量最重要的来源。()
简述领导者个体绩效考评的主要内容。
设f(x)是连续的奇函数,且∫01f(x)dx=1,则∫-10f(x)dx=_________.
呕血还是便血取决于出血部位的高低,出血的速度和出血量是次要的。
女性患者,甲状腺肿大伴多汗、多食、消瘦、心悸、烦躁,根据同位素扫描及血T3、T4检查,诊断为甲亢。治疗期间应定期复查()
孔子的仁爱核心是“恕”,“恕”的正确表达是()。
完成全面建设小康社会和实现现代化的历史性任务,重点和难点都在()。
Weoftentendtoassociatesmilingastheresultofapositiveeventormood.Butresearchdemonstratesthattheactofsmiling,
A、Space.B、Tranquility.C、Appliances.D、Location.B对话中甲,男士问道:“现在,最大的问题是:有噪音吗?邻居怎么样?”女士回答房子所在的地方很宁静,故B项“宁静”是男士主要考虑的问题。其他三项都不是男士主要
最新回复
(
0
)