首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 证明当0<a<b<π时bsinb+2cosb+πb>asina+2cosa+πa.
[2006年] 证明当0<a<b<π时bsinb+2cosb+πb>asina+2cosa+πa.
admin
2019-03-30
52
问题
[2006年] 证明当0<a<b<π时bsinb+2cosb+πb>asina+2cosa+πa.
选项
答案
证一 将待证的不等式中的b换成x.引入辅助函数F(x)=xsinx+2cosx+πx,x∈[0,π],利用函数的单调性证之.因F’(x)=xcosx-sinx+π,F’(π)=0,且 F"(x)=cosx-xsinx-cosx=-xsinx<0, x∈(0,π), 于是F’(x)在[0,π]上单调减少,因而有 F’(x)>F’(π)=0, .x∈(0,π). 即F(x)在(0,π)内单调增加,从而当0<a<b<π时,有 F(b)>F(a), 即 bsinb+2cosb+πb>asina+2cosa+πa. 证二 设φ(x)=xsinx+2cosx,x∈[0,π],对φ(x)在[a,b]上应用拉格朗日中值定理,得到φ(b)-φ(a)=φ’(ξ)(b-a),ξ∈(a,b)[*](0,π),即 bsinb+2cosb-asina-2cosa=(ξcosξ-sinξ)(b-a). ① 设g(x)=xcosx-sinx,x∈[0,π],则 g’(x)=cosx-xsinx-cosx=-xsinx<0, x∈(0,π). 因而g(x)在[0,π]上单调减少,故ξcosξ-sinξ>g(π)=-π. 由式①得到 bsinb+2cosb-asina-2cosa>-π(b-a), 移项得到 bsinb+2cosb+πb>asina+2cosa+πa.
解析
转载请注明原文地址:https://kaotiyun.com/show/zaP4777K
0
考研数学三
相关试题推荐
求函数f(x)=sinx的间断点,并指出类型。
设函数f(x)==________。
设pn=,n=1,2,…,则下列命题正确的是()
设二次型f(x1,x2,x3)=xTAx在正交变换x=Q),下的标准形为y12+y22,且Q的第三列为(Ⅰ)求A;(Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
设A是m×n矩阵,E是n阶单位阵,矩阵B=一aE+ATA是正定阵,则a的取值范围是________。
微分方程xy’+y=0满足初始条件y(1)=2的特解为________。
设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f’(ξ)=0.
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
微分方程2y"=3y2满足初始条件y(-2)=1,y’(-2)=1的特解为______.
求微分方程y’’=y’2满足初始条件y(0)=y’(0)=1的特解.
随机试题
最易继发感染的手足癣为下列哪一型
细胞外液的渗透压范围为()
男,47岁,半年前开始出现餐后上腹疼痛。经医院正规治疗缓解,1周前又出现此症状,至医院就诊。胃镜发现胃小弯侧溃疡性病变,病理证实良性。何种治疗方法为首选()
()可以成为宅基地使用权的权利主体。
在波长为λ的驻波中,两个相邻的波腹之间的距离为()。
运费,货运
下列行为可能使一台计算机感染病毒的是()。
签订行政合同的方式是()。
开封素有“八朝古都”之称,是世界上唯一一座城市中轴线从未变动的都城,“城摞城”遗址在世界考古史和都城史上少有。下列朝代中未在开封建都的是:
Thepriceofabitcointopped$900lastweek,anenormoussurgeinvaluethatarrivedamidstCongressionalhearingswheretopU.
最新回复
(
0
)