首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 证明当0<a<b<π时bsinb+2cosb+πb>asina+2cosa+πa.
[2006年] 证明当0<a<b<π时bsinb+2cosb+πb>asina+2cosa+πa.
admin
2019-03-30
58
问题
[2006年] 证明当0<a<b<π时bsinb+2cosb+πb>asina+2cosa+πa.
选项
答案
证一 将待证的不等式中的b换成x.引入辅助函数F(x)=xsinx+2cosx+πx,x∈[0,π],利用函数的单调性证之.因F’(x)=xcosx-sinx+π,F’(π)=0,且 F"(x)=cosx-xsinx-cosx=-xsinx<0, x∈(0,π), 于是F’(x)在[0,π]上单调减少,因而有 F’(x)>F’(π)=0, .x∈(0,π). 即F(x)在(0,π)内单调增加,从而当0<a<b<π时,有 F(b)>F(a), 即 bsinb+2cosb+πb>asina+2cosa+πa. 证二 设φ(x)=xsinx+2cosx,x∈[0,π],对φ(x)在[a,b]上应用拉格朗日中值定理,得到φ(b)-φ(a)=φ’(ξ)(b-a),ξ∈(a,b)[*](0,π),即 bsinb+2cosb-asina-2cosa=(ξcosξ-sinξ)(b-a). ① 设g(x)=xcosx-sinx,x∈[0,π],则 g’(x)=cosx-xsinx-cosx=-xsinx<0, x∈(0,π). 因而g(x)在[0,π]上单调减少,故ξcosξ-sinξ>g(π)=-π. 由式①得到 bsinb+2cosb-asina-2cosa>-π(b-a), 移项得到 bsinb+2cosb+πb>asina+2cosa+πa.
解析
转载请注明原文地址:https://kaotiyun.com/show/zaP4777K
0
考研数学三
相关试题推荐
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是()
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵的秩都等于4,A是4×6矩阵,则()
设向量组(Ⅰ):b1,…,br,能由向量组(Ⅱ):α1,…,αs线性表示为(b1,…,br)=(α1,…,αs)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅰ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
设z=f(x+y,x—y,xy),其中f具有二阶连续偏导数,求dz与
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a)。(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
设函数f(t)连续,则二重积分dθ∫2cosθ2f(r2)rdr=()
设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则f’x(0,1,-1)=______.
求微分方程x2y’+xy=y2满足初始条件y(1)=1的特解.
设线性方程组A3×3X=b有唯一解ξ1=(1,一1,2)T,α是3维列向量,方程(A┆α)X=b有特解η1=(1,一2,1,3)T,则方程组(A┆α)X=b的通解是___________.
(2004年)设f(x)在(一∞,+∞)内有定义,且则()
随机试题
党的十六大报告指出:绕筹城乡经济社会发展,()、()、()是全面建设小康社会的重大任务。
根据《商业银行开办代客境外理财业务管理暂行办法》中的规定,境外理财资金汇回后,( )。
某商场采用毛利率法对商品的发出和结存进行日常核算。2007年10月,甲类商品期初库存余额为30万元。该类商品本月购进为80万元,本月销售收入为102万元,本月销售折让为2万元;上月该类商品按扣除销售折让后计算的毛利率为20%。假定不考虑相关税费,2007年
物理学的发展丰富了人类对物质世界的认识,推动了科学技术的创新和革命,促进了物质生产的繁荣与人类文明的进步。下列表述正确的是()。
人们试图去预测世界发展线路或寻求过分简化及单向的解决办法,对此我们都应保持怀疑的态度,因为世界形势极其复杂。发展趋势分析则在我们展望未来时提供了一种更为错综复杂的观点,使我们集中关注所要面临的决策分析。对这段文字理解正确的是:
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
在一次对全省小煤矿的安全检查后,甲、乙、丙三个安检人员各自都做出断言。甲说:“有小煤矿存在安全隐患。”乙说:“有小煤矿不存在安全隐患。”丙说:“大运和宏通两个小煤矿不存在安全隐患。”如果上述三个结论只有一个正确,则以
Arecentparliamentaryreportblamesthegovernmentandthefoodindustryforthegrowthinobesity.TheDepartmentofTransport
某数据库中有员工关系E、产品关系P、仓库关系W和库存关系I,其中: 员工关系E(employeeID,name,department)中的属性为:员工编号,姓名,部门; 产品关系P(productID,name,model,size,color
OnTakingCETRepeatedly1.现在许多考生为了得高分,多次参加大学英语等级考试2.有人对这种做法不赞成3.我的看法
最新回复
(
0
)