首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1. 证明:存在ξ∈(0,3),使得f’(ξ)=0.
设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1. 证明:存在ξ∈(0,3),使得f’(ξ)=0.
admin
2017-12-31
31
问题
设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.
证明:存在ξ∈(0,3),使得f’(ξ)=0.
选项
答案
因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,故f(x)在[0,2]取到最大值M和最小值m,显然3m≤f(0)+f(1)+f(2)≤3M,即m≤1≤M,由介值定理,存在c∈[0,2],使得f(c)=1. 因为f(x)在[c,3]上连续,在(c,3)内可导,且f(c)=f(3)=1,根据罗尔定理,存在ξ∈(c,3)[*](0,3),使得f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/mHX4777K
0
考研数学三
相关试题推荐
已知某商品的需求量D和供给量S都是价格p的函数;D=D(p)=,S=S(p)=bp,其中a>0和b>0为常数;价格p是时间t的函数且满足方程=k[D(p)一S(p)](k为正的常数).假设当t=0时价格为1,试求需求量等于供给量时的均衡价格pe;
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记αj=[α1j,α2j,α3j,α4j]T,j=1,2,…,5.问:α4能否由α1,α2,α3线性表出,说明理由.
已知n阶矩阵求|A|中元素的代数余子式之和,第i行元素的代数余子式之和,i=1,2,…,n及主对角元的代数余子式之和
设α1=[1,0,一1,2]T,α2=[2,一1,一2,6]T,α3=[3,1,t,4]T,β=[4,一1,一5,10]T,已知β不能由α1,α2,α3线性表出,则t=________.
证明:f(x,y)=Ax2+2Bxy+Cy2在约束条件g(x,y)=下有最大值和最小值,且它们是方程k2一(Aa2+Cb2)k+(AC—B2)a2b2=0的根.
求函数f(x,y)=x2+2y2一x2y2在区域D={(x,y)|x2+y2≤4,y≥0}上的最大值与最小值.
设向量组α1=[a11…a21,an1]T,α2=[a12,a22,…,an2]T,…,αs=[a1s,a2s,…ans]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
设二次型f(x1,x2,x3)=XTAX=ax12+222一223+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为一12.利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵。
确定a、b,使得当x→0时,a—cosbx+sin3x与x3为等价无穷小.
当x→0时,微分方程(3x2+2)yˊˊ=6xyˊ的某个解与ex-1是等价无穷小,则该解为________.
随机试题
A.维生素B.银杏内酯C.紫杉醇D.青蒿素E.冰片
中国耕地具有的特点包括()。
如下图所示,消防管道直径D=200mm,末端收缩形喷嘴出口直径d=50mm,喷嘴和管道用法兰盘连接,并用螺栓固定。当流量Q=0.1m3/s时,螺栓所受的总拉力为()kN。
中央银行调整存款准备金率的直接作用是()
某市政桥梁工程,总包方A市政公司将钢梁安装工程分包给B安装公司。总包方A公司制定了钢梁吊装方案并得到监理工程师的批准。由于工期紧,人员紧缺,B公司将刚从市场招聘的李某与高某经简单内部培训即组成吊装组。某日清晨,雾气很浓,能见度较低,吊装组就位,准备对刚组
目前我国商业银行按照贷款余额的()提取的贷款呆账准备金作为普通准备金。
阅读下面某版本历史教材中有关科举制的表述,回答问题。继唐太宗之后,武则天也大力提倡科举。有一年,她将应举的人集中到洛阳宫殿,亲自出题面试,用了几天时间。这是殿试的开始。武则天还让各州每年选送武艺好的人,进行骑射等项考试,称为武举。武则天在位时,科
马克思主义公开问世的标志是
在对数据流图的分析中,主要是找到中心变换,这是从数据流图导出哪项的关键?
Hisfailure______greatdisappointmentstohisparents.
最新回复
(
0
)