首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证: (Ⅰ)存在η∈(1/2,1),使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证: (Ⅰ)存在η∈(1/2,1),使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
admin
2019-07-10
68
问题
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:
(Ⅰ)存在η∈(1/2,1),使f(η)=η;
(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f
’
(ξ)-λ[f(ξ)-ξ]=1.
选项
答案
(Ⅰ)由题设,引入辅助函数φ(x)=x-f(x),则φ(x)在[0,1]上连续,由已知条件f(1)=0及f(1/2)=1,知φ(1)=1-f(1)=1>0且[*] ,所以由闭区间上连续函数的介值定理知存在一点η∈(1/2,1),使得φ(n)=0, 即η-f(η)=0,因此存在η∈(1/2,1),使f(η)=η,证毕. (Ⅱ)引入辅助函数,由原函数法将所需证明的等式中的ξ改写为x, 有f
’
(x)-λ[f(x)-x]=1,即f
’
(x)-λf(x)=1-λx. 由一阶线性非齐次微分方程的通解公式得: 所以[f(x)-x]e
-λx
=C,至此可令辅助函数为g(x)=[f(x)-x]e
-λx
=-φ(x)e
-λx
, 由已知条件及(I)中结论,知g(x)也是连续函数, 且g(0)=[f(0)-0]e
0
=0,g(η)=-φ(η)e
-λη
=0. 由罗尔定理知存在一点ξ(0,η),使得g
’
(ξ)=0, 又g
’
(x)=-λe
-λx
[f(x)-x]+e
-λx
[f
’
(x)-1], 所以-λ[f(ξ)-ξ]+f
’
(ξ)-1=0 此即f
’
(ξ)-λ[f(ξ)-ξ]=1.证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/zoN4777K
0
考研数学二
相关试题推荐
∫01e-xsinnxdx=_______。
设二阶可导函数f(x)满足f(1)=f(-1)=1,f(0)=-1且f"(x)>0,则()
设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,f(x)/x<0。证明:(Ⅰ)方程f(x)=0在区间(0,1)内至少存在一个实根;(Ⅱ)方程f(x)f"(x)+[f’(x)]2=0在区间(0,1)内至少存在两个不同的实根。
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ)。
[*]
曲线在点(0,1)处的法线方程为_______。
函数y=x2x在区间(0,1]上的最小值为_______。
设A=E-ααT,其中a为n维非零列向量.证明:A2=A的充分必要条件是g为单位向量;
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3.求矩阵A的全部特征值;
设线性方程组(1)求线性方程组(I)的通解;(2)m,n取何值时,方程组(I)与(Ⅱ)有公共非零解;(3)m,n取何值时,方程组(I)与(Ⅱ)同解.
随机试题
杨某与宋某于2007年11月来到云南边境某地,在街上认识少妇龚某(另案处理),要求龚某帮助联系购买毒品。当晚龚某将缅甸贩毒分子金某领入自己家中,金某与杨某、宋某密谈毒品生意,约定由金某将鸦片带入我国境内一小河边交货取钱。当龚某与金某出境拿货时,杨某与宋某从
患者男,37岁,颈椎病。经前路椎间盘摘除植骨融合术后2天。下列哪项需护士特别注意
下列属于行政处罚法规定的不予处罚的情形的是:()
施工合同示范文本规定可以顺延工期的条件有( )。
矿井进行井上下的联系测量,至少应满足()的要求。
税务机关向某电脑公司采购手提电脑,税务机关与该电脑公司建立的是( )法律关系。
甲公司为生产加工企业,其在20×6年度发生了以下与股权投资相关的交易:(1)甲公司在若干年前参与设立了乙公司并持有其30%的股权,将乙公司作为联营企业,采用权益法核算。20×6年1月1日,甲公司自A公司(非关联方)购买了乙公司60%的股权并取得了控制权,
小王和你一起竞聘主管都失败,然后联合几个同事排挤你。你怎么办?
AnonymityisnotsomethingwhichwasinventedwiththeInternet.Anonymityandpseudonymityhasoccurredthroughouthistory.For
为了保障网络安全,防止外部网对内部网的侵犯,多在内部网络与外部网络之间设置()。
最新回复
(
0
)