首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn—r是对应的齐次线性方程组的一个基础解系。证明: η*,ξ1,…,ξn—r线性无关;
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn—r是对应的齐次线性方程组的一个基础解系。证明: η*,ξ1,…,ξn—r线性无关;
admin
2019-05-11
55
问题
η
*
是非齐次线性方程组Ax=b的一个解,ξ
1
,…,ξ
n—r
是对应的齐次线性方程组的一个基础解系。证明:
η
*
,ξ
1
,…,ξ
n—r
线性无关;
选项
答案
假设η
*
,ξ
1
,…,ξ
n—r
线性相关,则存在不全为零的数c
0
,c
1
,…,c
n—r
使得 c
0
η
*
+c
1
ξ
1
+…+c
n—r
ξ
n—r
=0, (1) 用矩阵A左乘上式两边,得 0=A(c
0
η
*
+c
1
ξ
1
+…+c
n—r
ξ
n—r
)=c
0
Aη
*
+c
1
Aξ
1
+…+c
n—r
Aξ
n—r
=c
0
b, 其中b≠0,则c
1
=0,于是(1)式变为 c
1
ξ
1
+…+c
n—r
ξ
n—r
=0, ξ
1
,…,ξ
n—r
是对应的齐次线性方程组的一个基础解系,故ξ
1
,…,ξ
n—r
线性无关,因此c
1
=c
2
=…=c
n—r
=0,与假设矛盾。 所以η
*
,ξ
1
,…,ξ
n—r
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/zyV4777K
0
考研数学二
相关试题推荐
设(Ⅰ),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中(1)求方程组(Ⅰ)的基础解系;(2)求方程组(Ⅱ)BX=0的基础解系;(3)(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
求u=χ2+y2+z2在约束条件,下的最小值和最大值.
求f(χ)=的间断点并判断其类型.
设方程组有无穷多个解,为矩阵A的分别属于特征值λ1=1,λ2=-2,λ3=-1的特征向量.(1)求A;(2)求|A3+3E|.
求曲线y=-x2+1上一点P(x0,y0)(其中x0≠0),使过P点作抛物线的切线,此切线与抛物线及两坐标轴所围成图形的面积最小.
设函数f(t)在(0,+∞)内具有二阶连续导数,函数z=满足=0,若f(1)=0,f’(1)=1,求f(x).
求极限(sint/sinx)x/(sint-sinx),记此极限为f(x),求函数f(x)的间断点并指出其类型。
一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例常数K>0。假设在融化过程中雪堆始终保持半球体状,已知半径为r0的雪堆在开始融化的3小时内,融化了其体积的7/8,问雪堆全部融化需要多少小时?
一半径为R的球沉入水中,球面顶部正好与水面相切,球的密度为1,求将球从水中取出所做的功.
随机试题
给某患者静脉注射25%葡萄糖溶液100ml,患者顷刻尿量显著增加,测定尿糖为阳性,分析患者尿量增多的主要原因是
按照《建筑地基基础设计规范》(GB50007—2011),地基持力层承载力特征值由经验值确定时,下列哪些情况,不应对地基承载力特征值进行深宽修正?()
某企业月末编制试算平衡表时,因漏算一个账户,计算的月末借方余额合计为400000元,月末贷方余额合计为450000元,则漏算的账户()元。
产业结构政策的核心是()。
“三个代表”是一个完整统一的整体,请简述三者之间的辩证关系。
你们部门负责生产安全监察工作。你带队去一个企业检查工作。发现该企业存在严重的安全问题。企业负责人对你说,如果停产,企业的订单和职工工资会受到影响。如果是你,你该怎么处理?
水平放置的幼苗,经过一段时间根向下弯曲生长,其原因是__________。①重力作用,背离地面一侧生长素分布得少②光线作用,靠近地面一侧生长素分布得多③根对生长素反应敏感④根对生长素反应不敏感
设A=E-ααT,其中α为n维非零列向量.证明:当α是单位向量时A为不可逆矩阵.
(73)are essential for the protection of data.
A、Themanwondershowcriticswillreviewtheshow.B、Themanwillhelpthewomansellherpaintings.C、Thewomanisconfidenti
最新回复
(
0
)