首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项中,正确的是( ).
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项中,正确的是( ).
admin
2020-09-25
94
问题
设α
1
,α
2
,…,α
s
均为n维列向量,A是m×n矩阵,下列选项中,正确的是( ).
选项
A、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性相关
B、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性无关
C、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性相关
D、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性无关
答案
A
解析
B=(Aα
1
,Aα
2
,…,Aα
s
)=A(α
1
,α
2
,…,α
s
)=AC,由B=AC知,R(B)≤min{R(A),R(C)},因此R(B)≤R(C).
若α
1
,α
2
,…,α
s
线性相关,则R(C)
从而可得R(B)≤R(C)<s,即向量组Aα
1
,Aα
2
,…,Aα
s
线性相关.故选A.
转载请注明原文地址:https://kaotiyun.com/show/1Px4777K
0
考研数学三
相关试题推荐
设A=,B是3阶非零矩阵,且AB=O,则Ax=0的通解是__________.
已知y1=e3x—xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=________。
若a1,a2,a3,β1,β2都是4维列向量,且4阶行列式|a1,a2,a3,β1|=m,|a1,a2,β2,a3|=n,则4阶行列式|a1,a2,a3,β1+β2|=
设矩阵A与B=相似,则r(A)+r(A一2E)=________。
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是___________。
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中P=;(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
设向量α1,α2,…,αt是齐次线性方程组.AX=0的一个基础解系,向量β不是AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
[2015年]设二次型f(x1,x2,x3)在正交变换X=PY下的标准形为2y12+y22-y32,其中P=(e1,e2,e3).若Q=(e1,-e3,e2),则f(x1,x2,x3)在正交变换X=QY下的标准形为().
随机试题
标准物质应具有()为特性值。
属于创造性支出的是
把下面的句子翻译成现代汉语口之宣言也,善败于是乎兴。
大量蛋白尿的CKD患者需要给予高蛋白饮食,以纠正低蛋白血症。
患者有风心病病史3年,刻下症见:心悸气短,动则气促,神疲乏力,自汗,胸闷心痛,咳唾痰涎,舌暗红苔白腻,脉弦滑时有结代。其治法是
下列有关互感器二次回路的规定哪一项是正确的?()
自制原始凭证必须有经办单位负责人或指定人员签名或盖章,对外开出的原始凭证,必须加盖本单位公章。( )
中国人民银行规定商业银行逾期贷款率应不大于()。
依据对“具有基本的安全知识和自我保护能力”目标的理解,下面()是正确的。
以下不属于供应链管理策略的是______。
最新回复
(
0
)