首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解. 求A及,其中E为3阶单位矩阵.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解. 求A及,其中E为3阶单位矩阵.
admin
2021-02-25
96
问题
设3阶实对称矩阵A的各行元素之和均为3,向量α
1
=(-1,2,-1)
T
,α
2
=(0,-1,1)
T
是线性方程组Ax=0的两个解.
求A及
,其中E为3阶单位矩阵.
选项
答案
因Q
T
AQ=∧,且Q为正交矩阵,故A=Q∧Q
T
. [*] 由A=Q∧Q
T
得[*]所以 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/3Z84777K
0
考研数学二
相关试题推荐
一个瓷质容器,内壁和外壁的形状分别为抛物线y=。把它铅直地浮在水中,再注入比重为3的溶液。问欲保持容器不沉没,注入液体的最大深度是多少?(长度单位为厘米)
设A为n阶实对称矩阵,满足A2=E,并且r(A+E)=k<n.①求二次型xTAx的规范形.②证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
设A,B为三阶矩阵且A不可逆,又AB+2B=O且r(B)=2,则|A+4E|=().
设3维向量组α1,α2线性无关,β1,β2线性无关.(Ⅰ)证明:存在非零3维向量ξ,ξ既可由α1,α2线性表出,也可由β1,β2线性表出;(Ⅱ)若α1=(1,-2,3)T,α2=(2,1,1)T,β1=(-2,1,4)T,β2=(-5,-3,5)T.求
设A是n阶矩阵,证明:(Ⅰ)r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
已知向量组α1,α2,α3和β1,β2,β3,β4都是4维实向量,其中r(α1,α2,α3)=2,r(β1,β2,β3,β4)>1,并且每个βi与α1,α2,α3都正交.则r(β1,β2,β3,β4)=
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
设3阶矩阵A=(α1,α2.α3)有3个不同的特征值,且α3=α1+2α2.若β=α1+α2+α3,求方程组Ax=β的通解.
设A=,正交矩阵Q使得QTAQ为对角矩阵,若Q的第一列为(1,2,1)T,求a,Q。
随机试题
下述哪些物质能导致血管收缩
下列哪项不是天然来源产生的本底
一位类风湿关节炎患者,在社区就诊时主诉右肘关节伸侧长了一个蚕豆大小的结节约4个月,医生检查完后告诉她,这个结节说明
在建筑工程初步设计文件深度不够、不能准确计算出工程量的情况下,可采用的设计概算编制方法是()。【2015年真题】
在企业发生长期借款利息的情况下,借方不可能涉及的科目是()。
封闭式基金的固定存续期通常()。
上市公司甲集团公司是ABC会计师事务所的常年审计客户,主要从事化工产品的生产和销售。A注册会计师负责审计甲集团公司2013年度财务报表,确定集团财务报表整体的重要性为200万元。资料一:甲集团公司拥有一家子公司和一家联营企业,与集团审计相关的部分信息摘
龙门石窟以奉先寺石窟最为著名,敦煌石窟以莫高窟最为著名,云冈石窟以昙曜五窟最为著名。()
聘任或任命教师担任职务应当有一定的任期,每一任期一般为()。
社会主义法与社会主义道德的区别表现为()。
最新回复
(
0
)