首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程 y"+p(x)y’+q(x)y=f(x) ① 的3个解,且 则式①的通解为________.
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程 y"+p(x)y’+q(x)y=f(x) ① 的3个解,且 则式①的通解为________.
admin
2018-09-20
121
问题
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y
1
(x),y
2
(x)与y
3
(x)是二阶非齐次线性方程
y"+p(x)y’+q(x)y=f(x) ①
的3个解,且
则式①的通解为________.
选项
答案
y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
)+y
1
,其中C
1
,C
2
为任意常数
解析
由非齐次线性方程的两个解,可构造出对应的齐次方程的解,再证明这样所得到的解线性无关便可.
y
1
一y
2
与y
2
一y
3
是式①对应的齐次线性方程
y"+p(x)y’+q(x)y=0 ②
的两个解.现证它们线性无关.事实上,若它们线性相关,则存在两个不全为零的常数k
1
与k
2
使
k
1
(y
1
一y
2
)+k
2
(y
2
一y
3
)=0. ③
设k
1
≠0,又由题设知y
2
一y
3
≠0,于是式③可改写为
矛盾.若k
1
=0,由y
2
一y
3
≠0,故由式③推知k
2
=0矛盾.这些矛盾证得y
1
一y
2
与y
2
—y
3
线性无关.
于是
Y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
)
为式②的通解,其中C
1
,C
2
为任意常数,从而知
y=C
1
(y
1
一y
2
)+C
2
(y
2
-y
3
)+y
1
为式①的通解.
转载请注明原文地址:https://kaotiyun.com/show/AxW4777K
0
考研数学三
相关试题推荐
已知函数x=u(x,y)eax+by,其中u(x,y)具有二阶连续偏导数,且
设D={(x,y)|-∞<x<+∞,-∞<y<+∞},求
计算下列二重积分:(Ⅰ)|x2+y2-1|dσ,其中D={(x,y)|0≤x≤1,0≤y≤1};(Ⅱ)|sin(x-y)|dσ,其中D={(x,y)|0≤x≤y≤2π}
已知A是m×n矩阵,B是n×P矩阵,r(B)=n,AB=0,证明A=0.
求曲线y=xe-x在点处的切线方程.
设点A(1,0,0),B(0,1,1),线段AB绕z轴一周所得旋转曲面为S.求曲面S介于平面z=0与z=1之间的体积.
设a1=1,当n≥1时,an+1=证明:数列{an}收敛并求其极限.
设X1,X2,…,Xn,…相互独立且都服从参数为λ(λ>0)的泊松分布,则当n→∞时,以Ф(x)为极限的是()
求极限
已知=x+2y+3,u(0,0)=1,求u(x,y)及u(x,y)的极值,并问此极值是极大值还是极小值?说明理由。
随机试题
甲将捡到的一只走失的山羊饲养起来,并花钱配种生了两只小山羊,后失主找到了甲要羊,对此()
出入肝门的结构有()
A.内痔B.肛瘘C.肛裂D.直肠癌E.直肠息肉直肠指诊指套有脓血的是
潜意识属
根据《环境影响评价技术导则一生态影响》规定的生态影响评价原则不包括()。
某发盘人在其订约建议中加有“仅供参考”字样,则这一订约建议为()
发行人披露的招股意向书除不含发行价格、筹资金额以外,其内容与格式应当与( )一致,并与其具有同等法律效力。
设计会议评估表时应考虑的要素有()。
“师者,所以传道授业解惑也”是出自著名教育家()。
螳臂当车:自不量力
最新回复
(
0
)