首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上可导,f’(x)+[f(x)]2一∫0xf(t)dt=0,且∫abf(t)dt=0。证明: ∫axf(t)dt在(a,b)内恒为零。
设f(x)在[a,b]上可导,f’(x)+[f(x)]2一∫0xf(t)dt=0,且∫abf(t)dt=0。证明: ∫axf(t)dt在(a,b)内恒为零。
admin
2018-12-19
26
问题
设f(x)在[a,b]上可导,f’(x)+[f(x)]
2
一∫
0
x
f(t)dt=0,且∫
a
b
f(t)dt=0。证明:
∫
a
x
f(t)dt在(a,b)内恒为零。
选项
答案
若F(x)在(a,b)内可取正值,由于F(a)=F(b)=0,故F(x)在(a,b)内存在最大值且为正,从而知F(x)在(a,b)内存在正的极大值,与上题中的结论矛盾,故F(x)在(a,b)内不可能取正值。同理可证F(x)在(a,b)内也不可能取到负值,故F(x)在(a,b)内恒为零。
解析
转载请注明原文地址:https://kaotiyun.com/show/Ctj4777K
0
考研数学二
相关试题推荐
已知向量组α1=(2,3,4,5)T,α2=(3,4,5,6)T,α3=(4,5,6,7)T,α4=(5,6,7,8)T,则向量组r(α1,α2,α3,α4)=_____________.
已知r(α1,α2,α3)=2,r(α2,α3,α4)=3,证明a4不能由α1,α2,α3线性表示.
设,B是3阶矩阵,则满足AB=O的所有的B=_________.
已知函数f(x)在[0,]上连续,在(0,)内是函数的一个原函数,且f(0)=0.(Ⅰ)求f(x)在区间[0,]上的平均值;(Ⅱ)证明f(x)在区间(0,)内存在唯一零点.
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在两个不同的点η,ξ∈(0,1),使得f’(η)f’(ξ)=1.
设D是位于曲线下方、x轴上方的无界区域.(1)求区域D绕x轴旋转一周所成旋转体的体积V(a);(2)当a为何值时,V(a)最小.并求此最小值.
微分方程yˊˊ-3yˊ+2y=2ex满足=1的特解为________.
(2005年)已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Aχ=0的通解.
(2013年)设二次型f(χ1,χ2,χ3)=2(a1χ1+a2χ2+a3χ3)+(b1χ1+b2χ2+b3χ3)2,记(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT.(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为
随机试题
在计算机中,通常将组成一个字的( )叫做字长。
四氮唑比色法测定肾上腺皮质激素含量时,需在碱性条件下进行,《中国药典》采用的碱为
有效毛收入是由潜在毛收入扣除空置等造成的收入损失后的收入。()
“做蛋糕”与“分蛋糕”是经济社会面临的最基本问题之一。既要把“蛋糕”做大,又要把“蛋糕”分好,“蛋糕”分得不合理,会影响人们把“蛋糕”做大的积极性。上述材料要求我们必须()。
实行警衔制度的意义有()。
下列行为中,甲应当承担民事责任的是()
设二元函数z=xex+y+(x+1)ln(1+y),求dz|(1,0)。
某模拟网站的主址是:http://localhost/web/index.htm,打开此主页,浏览“科技小知识"页面,查找“微型机器人到底有多大?"的页面内容并将它以文本文件的格式保存到考生文件夹下,命名为“wxjqr.txt”。
"Youneedanapartmentaloneevenifit’soveragarage,"declaredHelenGurleyBrowninher1962bestseller"SexandtheSingle
A、Brushingyourteethtwiceaday.B、Flossingyourteethonceaday.C、Avoidingeatingsaltysnacks.D、Seeingyourdentistsregu
最新回复
(
0
)