首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),令向量组(Ⅰ):α1,α2,…,αn;(Ⅱ):β1,β2,…,βn;(Ⅲ):γ1,γ2,…,γn,若向量组(Ⅲ)线性相关,则( ).
设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),令向量组(Ⅰ):α1,α2,…,αn;(Ⅱ):β1,β2,…,βn;(Ⅲ):γ1,γ2,…,γn,若向量组(Ⅲ)线性相关,则( ).
admin
2019-07-24
11
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
),B=(β
1
,β
2
,…,β
n
),AB=(γ
1
,γ
2
,…,γ
n
),令向量组(Ⅰ):α
1
,α
2
,…,α
n
;(Ⅱ):β
1
,β
2
,…,β
n
;(Ⅲ):γ
1
,γ
2
,…,γ
n
,若向量组(Ⅲ)线性相关,则( ).
选项
A、向量组(Ⅰ)与向量组(Ⅱ)都线性相关
B、向量组(Ⅰ)线性相关
C、向量组(Ⅱ)线性相关
D、向量组(Ⅰ)与(Ⅱ)至少有一个线性相关
答案
D
解析
当向量组(Ⅰ)线性相关时,r(A)<n,由r(AB)≤r(A)得r(AB)<n,即向量组(Ⅲ)线性相关;
同理,当向量组(Ⅱ)线性相关时,r(B)<n,由r(AB)≤r(B)得r(AB)<n即向量组(Ⅲ)线性相关,应选(D).
转载请注明原文地址:https://kaotiyun.com/show/GMc4777K
0
考研数学一
相关试题推荐
设总体X~N(μ,σ2),μ,σ2未知,而X1,X2,…,Xn是来自总体X的样本.(Ⅰ)求使得∫a+∞(χ;μ,σ)dχ=0.05的点a的最大似然估计,其中f(χ;μ,σ2)是X的概率密度;(Ⅱ)求P{X≥2}的最大似然估计.
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1-θ)2,EX=2(1-θ)(0为未知参数).(Ⅰ)试求X的概率分布;(Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计
设A是n阶非零实矩阵(n>2),并且AT=A*,证明A是正交矩阵.
设α1,α2,…,αs和β1,β2,…,βt是两个线性无关的n维实向量组,并且每个αi和βj都正交,证明α1,α2,…,αs,β1,β2,…,βt线性无关.
求f(χ)=的χ3的系数.
设随机变量X服从标准正态分布N(0,1),在X=χ(-∞<χ<+∞)的条件下,随机变量Y服从正态分布N(χ,1).求在Y=y条件下关于X的条件概率密度.
已知两个线性方程组同解,求m,n,t.
已知非齐次线性方程组有3个线性无关的解.(1)证明此方程组的系数矩阵A的秩为2.(2)求a,b的值和方程组的通解.
设n>1,n元齐次方程组AX=0的系数矩阵为(1)讨论a为什么数时AX=0有非零解?(2)在有非零解时求通解.
微分方程(4+ex)yy’=ex满足条件y(0)=1的特解为_______.
随机试题
关于ETF上市交易的原则,正确的有()。Ⅰ.基金上市首日的开盘参考价为前一工作日的基金份额净值Ⅱ.基金买入申报数量为100份或其整数倍,不足100份的部分可以卖出Ⅲ.申购申报单位为1元人民币,申购金额应当为1元的整数倍
升散是下述哪--邪气的致病特点
拟建项目的“活动”,一般可划分为()等阶段。
下列叙述有误的一项是()。
王先生投资某项目初始投入10000元,年利率10%,期限为1年,每季度付息一次,按复利计算,则其1年后本息和约为()元。
某公司作为零售业中的一个巨头,其成功建立在利用信息技术整合优势资源的基础之上。早在20世纪70年代,该公司就开始在其分销中心和各家商店运用计算机进行库存控制。80年代,该公司所有连锁商店都用上条形码扫描系统,还开发了一套市场营销管理软件系统。90年代在信息
从信息定义中我们不能够归纳出的含义有()。
环境是影响绩效的重要因素,比如()。
英国幼儿学校的创始人是()。
Mobilityisoneofthecharacteristicsoften______executives,andtheymustaccustomthemselvestomovingquiteregularly.
最新回复
(
0
)