首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2012年)已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2ex。 (I)求f(x)的表达式; (Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点。
(2012年)已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2ex。 (I)求f(x)的表达式; (Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点。
admin
2019-03-19
89
问题
(2012年)已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2e
x
。
(I)求f(x)的表达式;
(Ⅱ)求曲线y=f(x
2
)∫
0
x
f(一t
2
)dt的拐点。
选项
答案
(I)特征方程为r
2
+r一2=0,特征根为r
1
=1,r
2
=一2,因此齐次微分方程f"(x)+f’(x)一2f(x)=0的通解为f(x)=C
1
e
x
+C
2
e
-2x
。 再由f"(x)+f(x)=2e
x
,得2C
1
e
x
+5C
2
e
-2x
=2e
x
,可知C
1
=1,C
2
=0。故f(x)=e
x
。 [*] 令y"=0,原式可得x=0。 为了说明x=0是y"=0唯一的解,需讨论y"在x>0和x<0时的符号。 [*] 故x=0是y"=0唯一的解。 同时,由上述讨论可知曲线y=f(x
2
)∫
0
x
f(一t
2
)dt在x=0左右两边的凹凸性相反,可知点(0,0)是曲线y=f(x
2
)∫
0
x
f(一t
2
)dt唯一的拐点。
解析
转载请注明原文地址:https://kaotiyun.com/show/KlP4777K
0
考研数学三
相关试题推荐
设0≤an<(n=1,2,…),则下列级数中一定收敛的是()
设f(x)为可导函数,且满足条件,则曲线y=f(x)在点(1,f(1))处的切线斜率为()
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题:①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则r(A)=r(B);④若r(
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设生产某产品的固定成本为60000元,可变成本为20元/件,价格函数为P=60—(P是单价,单位:元;Q是销量,单位:件),已知产销平衡,求:(Ⅰ)该商品的边际利润;(Ⅱ)当P=50时的边际利润,并解释其经济意义;(Ⅲ)使得利润最大的定价P。
设有正项级数是它的部分和。(Ⅰ)证明收敛;(Ⅱ)判断级数是条件收敛还是绝对收敛,并给予证明。
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2…+(n-1)αn-1=0,b=α1+α2+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
(2018年)曲线y=x2+2lnx在其拐点处的切线方程是______.
[2018年]设某产品的成本函数C(Q)可导,其中Q为产量,若产量为Q0时平均成本最小,则().
随机试题
RatesareLow,butConsumerswon’tBorrowWithheavydebt,loadsandhighjoblessness,Americansarecautious.[A]TheU
以下属于物流系统中装卸要素目标之间的冲突的是()
症见当汗出而不汗出,身体、肢体疼重,属于
休克的根本病因是
财政所分配的是()国民收入,主要源于剩余产品价值。
支付担保的形式有( )。
目前,我国期货交易所没有止损指令。( )
关于全部投资现金流量表,下列说法正确的有()。
是否承认人民群众是历史的创造者,是衡量唯物与唯心主义历史观的根本分歧。()
Inthefirsthalfofthe20thcentury,thefastesturbangrowthwasinWesterncities.NewYork,LondonandotherFirstWorldca
最新回复
(
0
)