首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2. 当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2. 当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
admin
2016-01-11
38
问题
设A为3阶实对称矩阵,且满足条件A
2
+2A=O.已知A的秩r(A)=2.
当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
选项
答案
矩阵A+kE仍为实对称矩阵.由(1)知,A+kE的全部特征值为一2+k,一2+k,k,于是,当k>2时矩阵A+kE的特征值均大于零.因此,当k>2时,矩阵A+kE为正定矩阵.若A+kE为正定矩阵,只需其顺序主子式大于0,即k需满足k一2>0,(k一2)
2
>0,(k一2)
2
k>0,因此,当k>2时,矩阵A+kE为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/Pv34777K
0
考研数学二
相关试题推荐
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组AX=0的通解.
设A=且存在三阶非零矩阵B,使得AB=O,则α=________,b=________.
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足________.
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
设f(x)是连续函数,F(x)是f(x)的原函数,则().
设二维随机变量(x,y)的联合密度函数为f(x,y)=则k为().
设f(x)在[0,t](t>0)上有n阶导数且非负,已知f(0)=f’+(0)=f”+(0)=…=f+(n-2)(0)=0,f(n)(x)>0.(I)求F(t)=∫0tsf(x)dx-t∫0tf(x)dx(n为大于1的正整数)的n阶导数;(Ⅱ)证明:(
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).求A的特征值和特征向量;
随机试题
阅读下列短文,回答有关问题。民之穷亦甚矣!树艺畜牧之所得,将以厚其家,而吏夺之。既夺于吏,不敢怨怒。而庶几偿前之失者,望今岁之有秋也,而神复罚之。[亦孔之哀!]嘉谷垂熟,被乎原隰,淫雨暴风,旬月继作,尽扑而捋之。今虽已无可奈何,然遗粒委
Hadn’tmybikebrokendown,I______earlier.
Ach使窦房结细胞自律性降低是通过
某企业月末编制试算平衡表时,因漏算—个账户,计算的月末借方余额合计为150000元,月末贷方余额合计为160000元,则漏算的账户为()。
宏观调控的经济政策目标之间存在一定的矛盾和冲突,因此,政府应该对政策目标进行选择。当经济运行处于过热状态并导致严重的通胀时,政府应该()。
“教师根据学法指导教材向学生系统传授学习方法”的学法指导方式是()
A.IbelieveitwillcertainlybenefitbothofusB.youshouldmakereadjustment,replacementorwithdrawalofthegoodsinquest
下列关于RAID的描述中,错误的是()。
Formanypeopletoday,reading,isnolongerrelaxation.Tokeepuptheirworktheymustreadletters,reports,tradepublicatio
Whatisthereasonforthemessage?
最新回复
(
0
)