首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn. (1)证明:方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn. (1)证明:方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
admin
2019-08-28
66
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α
1
+2α
2
+…+(n-1)α
n-1
=0,b=α
1
+α
2
+…+α
n
.
(1)证明:方程组AX=b有无穷多个解;
(2)求方程组AX=b的通解.
选项
答案
(1)因为r(A)=n-1,又b=α
1
+α
2
+…+α
n
,所以[*]=n-1. 即r(A)=[*]=n-1<n,所以方程组AX=b有无穷多个解. (2)因为α
1
+2α
2
+…+(n-1)α
n-1
=0,所以α
1
+2α
2
+…+(n-1)α
n-1
+0α
n
=0, 即齐次线性方程组AX=0有基础解系ξ=(1,2,…,n-1,0)
T
, 又因为b=α
1
,α
2
,…,α
n
,所以方程组AX=b有特解η=(1,1,…,1)
T
, 故方程组AX=b的通解为 kξ+η=k(1,2,…,n-1,0)
T
+(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/VqJ4777K
0
考研数学三
相关试题推荐
求下列定积分:
求下列不定积分:∫e2x(1+tanx)2dx;
设随机变最X的分布函数为则X的概率分布为_______.
(1995年)设某产品的需求函数为Q=Q(P),收益函数为R=PQ,其中P为产品价格,Q为需求量,(产品的产量),Q(P)是单调减函数.如果当价格为P0,对应产量为Q0时,边际收益,收益对价格的边际效应,需求对价格的弹性为Ep=b>1,求P0和Q0.
(2008年)如图,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分∫0axf’(x)dx等于()
设函数f(x)在[0,1]上连续.在开区间(0,1)内大于零,并且满足(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2,求函数y=f(x),并问a为何值时.图形S绕x轴旋转一周所得旋转体的体积最小.
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2.若β=α1+α2+α3,求方程组Ax=β的通解.
已知下列非齐次线性方程组(Ⅰ),(Ⅱ):求解方程组(Ⅰ),用其导出组的基础解系表示通解;
用两种方案进行某种产品的销售,得部分销售量为:A方案:140,138,143,142,144,139;B方案:135,140,142,136.135,140.设两种方案下的销售量均服从正态分布,试在α=0.05下检验两种方案的
设二维随机变量(X,Y)的概率密度为则随机变量Z=X—Y的方差DZ=_____.
随机试题
下列说法错误的是
根管口是指
对胸廓的描述,正确的是
A.采光系数B.入射角C.开角D.自然照度系数E.人工照度根据不同目的,选用上述指标欲了解窗户高度对室内采光有无影响
控制良性复发和防止疟疾传播的药是用于治疗厌氧菌感染的药是
档案主要是从公文转化而来的,今天的档案是昨天的公文。()
生命健康权是妇女的()权利。
下列关于信息技术在数学教学中的作用,说法正确的是().
马航MH370航班失踪之后,国际海事卫星组织试图利用多普勒原理计算出失踪航班的下落。多普勒原理,源于这样一种物理现象(多普勒效应):随着飞机高速接近(或远离)接收微波信号的卫星,卫星所侦测到的微波频率就会越来越高(或越来越低)。下列描述的现象中,哪一种也体
Inasense,badthingscan(turn)______intogoodthings.
最新回复
(
0
)