首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶矩阵A有3个特征向量η1=(1,1,1)T,η2=(1,2,4)T,η2=(1,3,9)T,它们的特征值依次为1,2,3.又设α=(1,1,3)T,求Anα.
设3阶矩阵A有3个特征向量η1=(1,1,1)T,η2=(1,2,4)T,η2=(1,3,9)T,它们的特征值依次为1,2,3.又设α=(1,1,3)T,求Anα.
admin
2018-11-20
94
问题
设3阶矩阵A有3个特征向量η
1
=(1,1,1)
T
,η
2
=(1,2,4)
T
,η
2
=(1,3,9)
T
,它们的特征值依次为1,2,3.又设α=(1,1,3)
T
,求A
n
α.
选项
答案
把α表示为η
1
,η
2
,η
3
线性组合,即解方程x
1
η
1
+x
2
η
2
+x
3
η
3
=α, [*] 得到α=2η
1
一2η
2
+η
3
线.于是 A
n
α=A
n
(2η
1
一2η
2
+η
3
)=2A
n
η
1
一2A
n
η
2
+A
n
η
3
=2η
1
一2
n+1
η
2
+3
n
η
3
=(2—2
n+1
+3
n
,2—2
n+2
+3
n+1
,2—2
n+3
+3
n+2
)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/awW4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导,且f’+(a)f’一(b)<0.证明:存在ξ∈(a,b),使得f’(ξ)=0.
设函数其中g(x)二阶连续可导,且g(0)=1.(1)确定常数a,使得f(x)在x=0处连续;(2)求f’(x);(3)讨论f’(x)在x=0处的连续性.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22一2y32,且A*+2E的非零特征值对应的特征向量为α1=求此二次型.
设A=E一ααT,其中α为n维非零列向量.证明:A2=A的充分必要条件是α为单位向量;
设A是正交矩阵,且|A|<0.证明:|E+A|=0.
已知函数在(一∞,+∞)内连续可导,则().
求的通解,及其在初始条件y|x=1=0下的特解.
设n阶矩阵A=证明:行列式|A|=(n+1)an。
设随机变量X与Y的相关系数为0.5,E(X)=E(Y)=0,E(X2)=E(Y2)=2,则E[(X+Y)2]=________。
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
随机试题
对于保险公司的概念,理解有误的一项是()。
定积分的值是().
一般在火药中加入少量的二苯胺是为了改善火药的()。
期货交易中缴纳的保证金一般为期货合约价值的5%~10%。()
(2015年)下列经济政策中,不属于财政政策的是()。
某公司当年的经营利润很多,却不能偿还到期债务。为查清其原因,应检查的财务比率包括()。
一般情况下,使某投资方案的净现值小于零的折现率,一定小于该投资方案的内含报酬率。()
保险是指投保人根据合同约定,向保险人支付保险费,保险人对于合同约定的可能发生的事故因其发生所造成的财产损失承担赔偿保险金责任,或者当被保险人死亡、伤残、疾病或者达到合同约定的年龄、期限时承担给付保险金责任的商业保险行为。下列不属于保险的一项是(
简述心理旋转现象及其实验逻辑。(2015年)
RadianceExistsEverywhereA)Doyoubelieve,asIusedto,thatradioactivityisveryrareandverydangerous,restrictedtoars
最新回复
(
0
)