首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]有连续的导数,求证: |∫abf(x)dx|+∫ab|f’(x)|dx.
设f(x)在[a,b]有连续的导数,求证: |∫abf(x)dx|+∫ab|f’(x)|dx.
admin
2018-06-15
100
问题
设f(x)在[a,b]有连续的导数,求证:
|∫
a
b
f(x)dx|+∫
a
b
|f’(x)|dx.
选项
答案
可设[*]|f(x)|=|f(x
0
)|,即证 (b-a)|f(x
0
)|≤|∫
a
b
f(x)dx|+(b-a)∫
a
b
|f’(x)|dx, 即证|∫
a
b
f(x
0
)dx|-|∫
a
b
f(x)dx|≤6(b-a)∫
a
b
|f’(x)|dx. 注意|∫
a
b
f(x
0
)dx|-|∫
a
b
f(x)dx|≤|∫
a
b
[f(x
0
)-f(x)]dx| =|∫
a
b
[[*]f’(t)dt]dx|≤∫
a
b
[∫
a
b
|f’(t)|dt]dx=(b-a)∫
a
b
|f’(x)|dx. 故得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/iHg4777K
0
考研数学一
相关试题推荐
设L为曲线|χ|+|y|=1,则∫L|χ|ds=________.
设有摆线L:(-π≤θ≤π),则L绕χ轴旋转一周所得旋转面的面积A=_______.
设曲线厂的极坐标方程是r=eθ(0≤0≤π),则г上与直线y+χ=1平行的切线的直角坐标方程是_______.
若函数f(x)在(-∞,-+∞)内满足关系式f’(x)=f(x),且f(0)=1.证明:f(x)=ex.
设幂级数在x=0处收敛,在x=2b处发散,求幂级数的收敛半径R与收敛域,并分别求幂级数的收敛半径.
设A,B,C为常数,B2-AC>0,A≠0.u(x,y)具有二阶连续偏导数.证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程
设光滑曲面∑所围闭域Ω上,P(x,y,z)、Q(x,y,z)、R(x,y,z)有二阶连续偏导数,且∑为Ω的外侧边界曲面,由高斯公式可知的值为________
设数列{an},{bn}满足,cosan一an=cosbn,且级数收敛.证明:
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x→a的凡阶无穷小,求证:f(x)的导函数f′(x)当x→a时是x-a的n-1阶无穷小.
随机试题
表现心肾之间主要关系的是
温里剂的功用是下列哪项
会计账簿中书写的文字和数字上面要留有适当空格,不要写满格,一般应占格距的( ),以便留有改错的空间。
素质教育的时代特征是()
一次能源是指可以从自然界直接获取的能源。下列不属于一次能源的是()。
财产处分行为是指直接发生财产权移转或消灭效果的行为。财产处分行为的结果是使权利的移转,权利内容的缩小或改变,权利上设定负担以及权利消灭等。根据上述定义,下述行为中不属于财产处分行为的是( )。
讨论级数的敛散性.
下列关于字节的4条叙述中,正确的一条是
Whomostlikelyisgivingthetalk?
Thepreciseinstrumentcanrecordtheslightest______inpressure.
最新回复
(
0
)