首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n一3,证明η1,η2,η3为AX=0的一个基础解系.
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n一3,证明η1,η2,η3为AX=0的一个基础解系.
admin
2018-11-20
42
问题
设η
1
,η
2
,η
3
为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η
1
,η
2
,η
3
线性表示,并且r(A)=n一3,证明η
1
,η
2
,η
3
为AX=0的一个基础解系.
选项
答案
因为r(A)=n一3,所以AX=0的基础解系包含3个解.设γ
1
,γ
2
,γ
3
是AX=0的一个基础解系,则条件说明γ
1
,γ
2
,γ
3
可以用η
1
,η
2
,η
3
线性表示.于是有下面的关于秩的关系式: 3=r(γ
1
,γ
2
,γ
3
)≤r(η
1
,η
2
,η
3
;γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
)≤3, 从而 r(γ
1
,γ
2
,γ
3
) =r(η
1
,η
2
,η
3
;γ
1
,γ
2
,γ
3
)=r(η
1
,η
2
,η
3
), 这说明η
1
,η
2
,η
3
和γ
1
,γ
2
,γ
3
等价,从而η
1
,η
2
,η
3
也都是AX=0的解;又r(η
1
,η
2
,η
3
)=3,即η
1
,η
2
,η
3
线性无关,因此是AX=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/o5W4777K
0
考研数学三
相关试题推荐
设向量组α1,α2,…,αn一1为n维线性无关的列向量组,且与非零向量β1,β2正交.证明:β1,β2线性相关.
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设α1,…,αn为n个m维向量,且m<n,证明:α1,…,αn线性相关.
设向量组(Ⅰ):α1,α2,…,αs的秩为r1,向量组(Ⅱ):β1,β2,…,βs的秩为r2,且向量组(Ⅱ)可由向量组(Ⅰ)线性表示,则().
设函数f(x)在[0,+∞)内可导,f(0)=1,且f’(x)+f(x)一证明:当x≥0时,e一x≤f(x)≤1.
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
已知线性方程组问:(1)a,b为何值时,方程组有解?(2)有解时,求出方程组导出组的一个基础解系;(3)有解时,求出方程组导出组的全部解.
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解。
已知α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,那么向量α1一α2,α1+α2一2α3,(α2一α1),α1一3α2+2α3中,是方程组Ax=0解向量的共有()
随机试题
邓小平同志曾说:“中国的事情要按照中国的情况来办,要依靠中国人自己的力量来办,独立自主,自力更生,无论过去、现在和将来,都是我们的立足点。认清国情,是建设社会主义的指南针。”目前,我国最基本的国情是()。
Womenareoftensaidtobemore______thanmen.
腰椎前后斜位片上,腰椎椎体以外的结构(椎弓及附件)投影形似小狗,如图示,其对应解剖关系为A.“狗眼”B.“狗耳”C.“狗颈”D.“前腿”E.“后腿”近片侧椎弓峡部
出租汽车的停车场,属于哪类用地?
募捐晚会售出500元、400元、300元的门票共2600张,门票收入99万元,400元与500元的门票张数相等。400元的门票售出多少张?()
阅读以下文字。完成下列问题。近年来,“通俗历史热”不断出现于媒体的报道之中。作为一种关涉史学的文化现象,我们有必要从历史学的角度对其进行考察。“通俗历史热”是商品经济和文化教育发展到一定程度后定会出现的一种现象。实际上通俗历史并非“新生事物”,
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
设有定义:chars[81];inti=0;以下不能将一行(不超过80个字符)带有空格的字符串正确读入的语句或语句组是()。
SanFranciscoisusuallycoolinsummer,butLosAngeles______.
A、Itwastoodark.B、Hiseyesightisnotsogood.C、Themandoesn’twantto.D、Hecan’tfindtheswitch.D根据男士的回答“Idon’tknow
最新回复
(
0
)