首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2013年] 设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( ).
[2013年] 设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( ).
admin
2021-01-25
70
问题
[2013年] 设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( ).
选项
A、矩阵C的行向量组与矩阵A的行向量组等价
B、矩阵C的列向量组与矩阵A的列向量组等价
C、矩阵C的行向量组与矩阵B的行向量组等价
D、矩阵C的列向量组与矩阵B的列向量组等价
答案
B
解析
解一 对矩阵A,C分别按列分块,记A=[α
1
,α
2
,…,α
n
],C=[γ
1
,γ
2
,…,γ
n
],又令B=
(bγ
ij
)γ
n×n
,则由AB=C得到
可见,C的列向量组可由A的列向量组线性表出.因B可逆,由A=CB
-1
类似可证,A的列向量组也可由C的列向量组线性表出.由两向量组等价的定义知,仅(B)入选.
解二 因可逆矩阵可表示成若干个初等矩阵的乘积,而每个初等矩阵表示一次初等变换,可逆矩阵B左乘矩阵A,于是A经过有限次初等列变换化为C,而初等列变换能保持变换前的矩阵与变换后所得矩阵的列向量组的等价关系(见命题2.3.1.3),因而仅(B)入选.
注:命题2.3.1.3 如果矩阵A经有限次初等行(列)变换化成矩阵B(即A≌B),则A的行(列)向量组与B的行(列)向量组等价.
转载请注明原文地址:https://kaotiyun.com/show/oAx4777K
0
考研数学三
相关试题推荐
[2014年]证明n阶矩阵相似.
求下列函数的导数:(1)y=(3x2+1)3;(2)y=e-x2+x+1;(3)y=sin(4x+5);(4)y=cosx2;
设A=当a,b为何值时,存在矩阵C使得AC—CA=B,并求所有矩阵C。
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,6)内可导,则存在ξ∈(a,b),使得f(b)—f(A)=f’(ξ)(b—a)。(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
设随机变量X在区间(0,1)上服从均匀分布,在X=x(0<x<1)的条件下,随机变量Y在区间(0,x)上服从均匀分布.求:随机变量X和Y的联合概率密度;
设随机变量X1,X2,…,Xn相互独立,Sn=X1+X2+…+Xn则根据列维一林德伯格中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,X2,…,Xn().
(1995年)设f(x)、g(x)在区间[一a,a](a>0)上连续.g(x)为偶函数,且f(x)满足条件f(x)+f(一x)=A(A为常数)(1)证明∫-aaf(x)g(x)dx=A∫0ag(x)dx(2)利用(1)的结论计算定积分
求极限=_______.
已知E(X)=1,E(X2)=3,用切比雪夫不等式估计P{﹣1<X<4}≥a,则a的最大值为().
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项中,正确的是().
随机试题
空气调节房间总面积不大或建筑物中仅个别房间要求空调时,宜采用哪种空调机组?[2004年第82题]
急诊分诊标准中,Ⅱ类病人等待时间不应超过()
发热高峰期泌尿功能变化是尿量减少、尿比重升高。
短暂性脑缺血发作的主要病因是
关于单克隆抗体
普通型流脑的典型临床表现是
关于电子书的版式设计,说法正确的有()。
课外校外教育与课内教育的共同之处在于它们都是()
结合材料回答问题。材料1每个人是手段,同时又是目的,而且只有成为他人的手段才能达到自己的目的,并且只有达到自己的目的才能成为他人的手段,——这种相互关联是一个必然的事实。
ColumnAColumnBk6
最新回复
(
0
)