首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2010年] 设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且 [*] 证明存在ξ∈(0,3),使f"(ξ)=0.
[2010年] 设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且 [*] 证明存在ξ∈(0,3),使f"(ξ)=0.
admin
2019-03-30
57
问题
[2010年] 设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且
[*]
证明存在ξ∈(0,3),使f"(ξ)=0.
选项
答案
因f(x)在[2,3]上连续,设f(x)在此区间上的最大值为M,最小值为m,则x∈[2,3]时,有 m≤f(2)≤M,m≤f(3)≤M, 故 [*] 由介值定理知,存在δ∈(2,3),使[*]于是有f(0)=f(η)=f(δ). 对f(x)分别在[0,η]上,在[η,δ]上由罗尔定理知,至少存在一点ξ∈(0,η)[*](0,2),满足f’(ξ
1
)=0;至少存在一点ξ
2
∈(η,δ)[*](0,3),满足f’(ξ
2
)=0. 又因f’(x)在[ξ
1
,ξ
2
]上可导,且f’(ξ
1
)=f’(ξ
2
),由罗尔定理知,至少有一点ξ∈(ξ
1
,ξ
2
)[*](0,3),使f"(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/oaP4777K
0
考研数学三
相关试题推荐
微分方程y"+2y’+5y=0的通解为________。
A、 B、 C、 D、 D结合二重积分的定义可得
已知A,B为三阶非零矩阵,且β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求(Ⅰ)a,b的值;(Ⅱ)求Bx=0的通解。
设A是n阶矩阵,α是n维列向量,若=r(A),则线性方程组()
设A是m×n矩阵,E是n阶单位阵,矩阵B=一aE+ATA是正定阵,则a的取值范围是________。
设四元齐次线性方程组求:(Ⅰ)方程组(1)与(2)的基础解系;(Ⅱ)(1)与(2)的公共解。
设向量组(Ⅰ):b1,…,br,能由向量组(Ⅱ):α1,…,αs线性表示为(b1,…,br)=(α1,…,αs)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅰ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
下列命题中①如果矩阵AB=E,则A可逆且A—1=B;②如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E;③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆;④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。正确的是()
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
设A=有三个线性无关的特征向量,求x,y满足的条件.
随机试题
A.寒凉派B.滋阴派C.攻邪派D.补土派治病以汗吐下三法为主,为
肠易激综合征病人的腹泻多呈_______状,但绝无_______。
对猪致病性较强的球虫是()
多层小砌块房屋6度以下地震设防时的芯柱竖向插筋不应小于(),并贯通墙身与圈梁连接。
在审议公司和基金的审计事务、关联交易、高级管理人员的任免和薪酬、租用交易席位、聘用销售代理、托管或注册登记机构及相关费率、聘请或更换会计师事务所等事项时,必须取得基金管理公司()的独立董事同意。
金融中介可以分为交易中介和服务中介,下列属于交易中介的是()。
()是导游服务的灵魂。
以下人物及其成就说法不正确的是()。
一、注意事项1.本题本由给定资料与作答要求两部分组成。考试时间为150分钟。其中,阅读给定资料参考时限为40分钟,作答参考时限为110分钟。满分100分。2.请在题本、答题卡指定位置上用黑色字迹的钢笔或签字笔填写自己的姓名和准考证号,并
Isitapopularmajor?
最新回复
(
0
)