首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求幂级数的收敛域与和函数.
求幂级数的收敛域与和函数.
admin
2020-08-03
54
问题
求幂级数
的收敛域与和函数.
选项
答案
由ρ=[*]=1,得收敛半径R=1,收敛区间为(-1,1). 当x=±1时,|u
n
(n)|≤[*]收敛,故原级数绝对收敛,因而收敛域为[-l,1]. 设s(x)=[*],x∈[-1,1].显然x=0时,s(0)=0 当x∈(-1,1]且x≠0时 s(x)=[*] 而[*]=ln(1+x) 故s(x)=[*][(x+1)ln(1+x)-x]. 因s(x)在x=1处连续,故s(1)=ln2-[*];x=-1时,原级数为 [*] 因此 s(x)=[*]
解析
本题考查求幂级数的收敛域与和函数问题.这是一个标准形式的幂级数,可先求出收敛半径,定出收敛区间,再讨论端点处的收敛性可得收敛域,然后用间接法即逐项求导、积分等分析运算性质求解.
注:上述求解过程中用到了ln(1+x)=
,x∈(-1,1].若不清楚此式,则还要求导一次.所以请读者要熟记一些常用函数的幂级数展开式,如e
x
,sinx,cosx,(1+x)
m
,ln(1+x),ln(1-x),arctan x,等等.
转载请注明原文地址:https://kaotiyun.com/show/qMv4777K
0
考研数学一
相关试题推荐
(2011年)设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求
箱内有6个球,其中红、白、黑球的个数分别为1,2,3个.现从箱中随机地取出2个球,记X为取出的红球个数,y为取出的白球个数.求cov(X,Y).
(92年)设3阶矩阵A的特征值为λ1=1,λ2=2,λ3=3,对应的特征向量依次为(1)将β用ξ1,ξ2,ξ3线性表出.(2)求Anβ(n为自然数).
[2001年]设某班车起点站上车人数X服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且中途下车与否相互独立,以Y表示在中途下车的人数,求:在发车时有n个乘客的条件下,中途有m个人下车的概率;
[*]
[2013年]设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记证明二次型厂对应的矩阵为2ααT+ββT;
[2016年]设函数f(x,y)满足=(2x+1)e2x-y,且f(0,y)=y+1,Lt是从点(0,0)到点(1,t)的光滑曲线,计算曲线积分,并求I(t)的最小值.[img][/img]
设αi=[αi1,αi2,…,αin]T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关.已知β=[b1,b2,…,bn]T是线性方程组的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
[2008年]设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为______.
设A=(α1,α2,α3,α4)为四阶方阵,且α1,α2,α3,α4为非零向量组,设AX=0的一个基础解系为(1,0,一4,0)T,则方程组A*X=0的基础解系为().
随机试题
结石性胆囊炎临床症状明显者的根本治疗方法应用
有关锐利度和模糊度的叙述,错误的是
下列穴位中,可治疗痔疮的是
A.左侧卧位B.坐位身体前倾C.仰卧位D.右侧卧位E.从卧位或下蹲位迅速站立下列疾病,听诊时采用上述哪种呼吸或体位,杂音最清晰
背景资料:某大型水利水电工程由政府投资兴建。项目法人委托某招标代理公司代理施工招标。招标代理公司依据有关规定确定该项目采用公开招标方式招标,招标公告在当地政府规定的招标信息网上发布。招标文件中规定:投标担保可采用投标保证金或投标保函方式担保。评标方法采用
各相关机关和单位在实施工程建设强制性标准的监督管理中的作用是()。
按照《建设工程质量管理条例》的规定,( )单位不得转包或者违法分包工程项目。
下面是天津、上海、北京、重庆四城市某日的天气预报。已知四城市有三种天气情况,天津和北京的天气相同,上海和重庆当天都没有雨,那么,以下判断不正确的是( )
一只蚂蚁发现了一只死螳螂,立刻回洞找来10只蚂蚁搬,搬不动;然后每只蚂蚁回去各找来10只蚂蚁,还是搬不动;于是每只蚂蚁又回去找来10个伙伴,大家齐心协力,终于把死螳螂拖回洞里。问一共有多少只蚂蚁参加了搬运?
MeaninginLiteratureI.AUTHOR—Interpretauthor’sintendedmeaningbya)Readingotherworksby【T1】_____【T1】______b)Knowingc
最新回复
(
0
)