首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组,有非零解,且A=为正定矩阵,求a,并求当|X|=时XTAX的最大值.
设齐次线性方程组,有非零解,且A=为正定矩阵,求a,并求当|X|=时XTAX的最大值.
admin
2018-01-23
50
问题
设齐次线性方程组
,有非零解,且A=
为正定矩阵,求a,并求当|X|=
时X
T
AX的最大值.
选项
答案
因为方程组有非零解,所以[*]=a(a+1)(a-3)=0,即a=-1或 a=0或a=3.因为A是正定矩阵,所以a
ii
>0(i=1,2,3),所以a=3.当a=3时,由 |λE-A|=[*]=(λ-1)(λ-4)(λ-10)=0 得A的特征值为1,4,10.因为A为实对称矩阵,所以存在正交矩阵Q,使得 f=X
T
AX[*]y
1
2
+4y
2
2
+10y
3
2
≤10(y
1
2
+y
2
2
+y
3
2
) 所以当|X|=[*]时,X
T
AX的最大值为20(最大值20可以取到,如y
1
=y
2
=0,y
3
=[*]).
解析
转载请注明原文地址:https://kaotiyun.com/show/rjX4777K
0
考研数学三
相关试题推荐
设随机变量X的密度函数为fX(x),Y=一2X+3,则Y的密度函数为()
设随机变量Yi(i=1,2,3)相互独立,并且都服从参数p的0—1分布,令求随机变量(X1,X2)的联合分布.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,当x>0时,f(x)>0.证明对任意自然数k,存在ξ∈(0,1),使
微分方程y″+4y=2x2在原点处与y=x相切的特解是__________.
设f(x)有二阶连续导数,且(x0,f(x0))为曲线y=f(x)的拐点,则=()
已知商品的需求量D和供给量S都是价格p的函数:D=D(p)=,S=S(p)=bp,其中a>0,b>0为常数;价格P是时间t的函数,且满足方程=k[D(p)一S(p)](k为正常数).①假设当t=0时,价格为1.试求:(1)需求量等于供
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα-2A2α,证明:(Ⅰ)矩阵B=[α,Aα,A4α]可逆;(Ⅱ)BTB为正定矩阵.
已知an=x2(1一x)ndx,证明级数an收敛,并求这个级数的和.
已知f(x)和g(x)在[a,b]上连续,在(a,b)内具有二阶导数,且在(a,b)内存在相等的最大值,又设f(a)=g(a),f(b)=g(b),试证明:存在ξ∈(a,b)使得f’’(ξ)=g’’(ξ)。
已知αi=(αi1,αi2…,αin)T(i=1,2,…,r,r<n)是n维实向量,且α1,α2…,αr线性无关.已知β=(b1,b2,…,bn)T是线性方程组的非零解向量.试判断向量组α1,α2,…,αr,β的线性柑关性.
随机试题
如是者亦有年,然后浩乎其沛然矣。沛然:
关于细胞外铁,下述哪项是正确的
对单位工程概算理解不正确的是()。
在工程开工前,总监理工程师应组织专业监理工程师审查承包单位报送的施工组织设计(方案)报审表,提出意见,并经()审核,签认后报建设单位。
针对信用风险可以采取的压力情景不包括()。
目标管理的主要理论基础是激励理论中的()。
企业可以根据绩效考核结果划分出四种类型的员工,关于针对这四种员工应当采取的措施的说法,正确的有()。
下列选项中,关于“收回教育权”运动的表述错误的是
设随机事件A,B,C两两独立,且P(A),P(B),P(C)∈(0,1),则必有()
People’stastesinrecreationdifferwidely.Atarecentfestivalofpop-musicintheIsleofWight,crowdsofteenagersflocke
最新回复
(
0
)