首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设z=z(x,y)是由方程F(z+1/x,z-1/y)=0确定的隐函数,且具有连续的二阶偏导数. 证明:
设z=z(x,y)是由方程F(z+1/x,z-1/y)=0确定的隐函数,且具有连续的二阶偏导数. 证明:
admin
2019-08-21
41
问题
设z=z(x,y)是由方程F(z+1/x,z-1/y)=0确定的隐函数,且具有连续的二阶偏导数.
证明:
选项
答案
方程两边分别对x,y求导,可得 [*]
解析
利用隐函数求偏导数的方法是直接求偏导数;并注意在求导过程中将z看作因变量,x,y看作自变量,求出相应的偏导数并整理即可得所求的结论.
转载请注明原文地址:https://kaotiyun.com/show/yKN4777K
0
考研数学二
相关试题推荐
设函数u=u(x,y)满足及u(x,2x)=x,u’1(x,2x)=x2,u有二阶连续偏导数,则u"11(x,2x)=()
已知线性方程组(I)及线性方程组(Ⅱ)的基础解系ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T.求方程组(Ⅰ)和(Ⅱ)的公共解.
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n.
设f(x)在(-1,1)内二阶连续可导,且f"(x)≠0.证明:
(1)设问k满足什么条件时,kE+A是正定矩阵;(2)A是n阶实对称矩阵,证明:存在大于零的实数k,使得kE+A是正定矩阵.
求z=f(χ,y)满足:dz=2χdχ-4ydy且f(0,0)=5.(1)求f(χ,y).(2)求f(χ,y)在区域D={(χ,y)|χ2+4y2≤4}上的最小值和最大值.
设B=2A—E,证明:B2=E的充分必要条件是A2=A.
设f(x,y)连续,且f(x,y)=ex2+y2+xyxyf(x,y)dxdy,其中D表示区域0≤x≤1,0≤y≤1,则=()[img][/img]
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立.①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关.②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α
将∫01dy∫0yf(x2+y2)dx化为极坐标下的二次积分为______。
随机试题
患者,男,70岁。经常咳嗽、咳痰15年。3天前感冒后咳嗽加重,咳黄痰,无高血压病史。查体:双下肺可闻及湿性啰音。胸片示双肺纹理增多,双下肺可见斑片影。首先考虑的诊断为
下列非处方药的专有标识是
A.氧化与磷酸化的偶联B.CO对电子传递的影响C.能量的贮存与利用D.2H+与1/2O2的结合E.乳酸脱氢酶催化的反应与ADP和ATP相互转化相关的过程是()
下列行为中属于双方民事法律行为的是()。
以下关于直接融资和间接融资的说法中,正确的是()。
()是公文收文办理的中心环节。
培根说过的一句话:有些书可以稍微品尝,有些书不值一看,有些书则要认真咀嚼。谈谈你的看法。
今日______到府上打扰,实在是不得已。
关于财务混乱的错误谣言损害了一家银行的声誉,如果管理人员不试图反驳这些谣言,它们就会传播开来并最终摧毁顾客的信心。但如果管理人员努力驳斥这种谣言,则这种驳斥使怀疑增加的程度比使它减少的程度更大。如果以上陈述是正确的,根据这些陈述,下列哪项一定是正确
结合材料回答问题:加强和创新社会治理,非常重要的一点就是推动社会治理重心下移。打赢疫情防控阻击战,更需要将防控工作落实到单位社区、居住社区、小区、院落、居民楼、每一个有人群的空间,直到每一户、每个人。在这次疫情防控中,很多地方都把干部派到社区、小
最新回复
(
0
)