首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1α1+t2α1,其中t1,t2为实常数.试问t1,t2满足什么关系时,β1,β2,…,βm也为AX=0的一个基础解系.
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1α1+t2α1,其中t1,t2为实常数.试问t1,t2满足什么关系时,β1,β2,…,βm也为AX=0的一个基础解系.
admin
2018-08-02
82
问题
设α
1
,α
2
,…,α
s
为线性方程组Ax=0的一个基础解系,β
1
=t
1
α
1
+t
2
α
2
,β
2
=t
1
α
2
+t
2
α
3
,…,β
s
=t
1
α
1
+t
2
α
1
,其中t
1
,t
2
为实常数.试问t
1
,t
2
满足什么关系时,β
1
,β
2
,…,β
m
也为AX=0的一个基础解系.
选项
答案
由Ax=0的解的线性组合都是解知,β
1
,β
2
,…,β
s
都是Ax=0的解向量.由于已知Ax=0的基础解系含s个向量,所以,只要β
1
,β
2
,…,β
s
线性无关.就可作为基础解系,否则不能作为基础解系.由于β
1
,β
2
,…,β
s
由线性无关向量组α
1
,α
2
,…,α
s
线性表示的系数矩阵为s阶方阵 [*] 故β
1
,β
2
,…,β
s
线性无关[*]|P|=t
1
s
+(-1)
1-s
t
2
a
≠0,即当t
1
,t
2
满足t
1
a
+(-1)
1+s
t
2
a
≠0(s为偶数时,t
1
≠±t
2
;s为奇数时,t
1
≠-t
2
)时,β
1
,β
2
,…,β
s
也是Ax=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/02j4777K
0
考研数学二
相关试题推荐
设矩阵A=且A3=0(I)求a的值; (Ⅱ)若矩阵X满足X—XA2一AX+AXA2=E,其中E为3阶单位矩阵,求X.
已知函数f(x)在区间[a,+∞)上具有2阶导数,f(a)=0,(x)>0,(x)>0,设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明a<x0<b.
已知函数f(x)=求f(x)零点的个数.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
求微分方程(y-x3)dx-2xdy=0的通解.
证明:若矩阵A可逆,则其逆矩阵必然唯一.
设A=有三个线性无关的特征向量,则a=_______.
求方程组的通解.
设α1,…,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β-α1,…,β-αm线性无关.
随机试题
居住建筑的文化含义不包括
下列哪些疾病属纤维素性炎
某人民法院对被告人曹某等共同抢劫一案作出一审判决。曹某对犯罪事实供认不讳,仅以量刑过重为由提出上诉,其他被告人未提出上诉,人民检察院也未抗诉。二审法院经审理认为曹某构成犯罪,但曹某在二审作出裁判前因病死亡。二审法院应当如何处理该案件?()
2013年3月,王某在一次抢劫过程中,因行人报案,被市公安局侦查人员当场抓获。从侦查阶段到审判阶段,王某对被指控的抢劫罪没有异议。2013年6月15日。甲市基层人民法院正式受理了此案,并认为王某可能被判处3年以下有期徒刑,遂直接决定适用简易程序进行审理。2
下列上市公司中,可以公开发行优先股的有()。[2018年12月真题]Ⅰ.甲公司,其普通股为上证50指数成份股Ⅱ.乙公司,以公开发行优先股作为支付手段收购其他上市公司Ⅲ.丙公司,以减少注册资本为目的回购普通股,公开发行优先股作为支付
在信贷资产证券化过程中,()不属于信用增级的常用类型。
由于不可抗力因素导致的中断都属于非正常中断。()
在下列的管理沟通障碍中,属于客观障碍的有()。
心理现象是心理活动的表现形式。一般是指个人在社会活动中通过亲身经历和体验表现出的情感和意志等活动。根据上述定义,下列不属于心理现象的是()。
Whatdoweknowabouttheman?
最新回复
(
0
)