首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1α1+t2α1,其中t1,t2为实常数.试问t1,t2满足什么关系时,β1,β2,…,βm也为AX=0的一个基础解系.
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1α1+t2α1,其中t1,t2为实常数.试问t1,t2满足什么关系时,β1,β2,…,βm也为AX=0的一个基础解系.
admin
2018-08-02
93
问题
设α
1
,α
2
,…,α
s
为线性方程组Ax=0的一个基础解系,β
1
=t
1
α
1
+t
2
α
2
,β
2
=t
1
α
2
+t
2
α
3
,…,β
s
=t
1
α
1
+t
2
α
1
,其中t
1
,t
2
为实常数.试问t
1
,t
2
满足什么关系时,β
1
,β
2
,…,β
m
也为AX=0的一个基础解系.
选项
答案
由Ax=0的解的线性组合都是解知,β
1
,β
2
,…,β
s
都是Ax=0的解向量.由于已知Ax=0的基础解系含s个向量,所以,只要β
1
,β
2
,…,β
s
线性无关.就可作为基础解系,否则不能作为基础解系.由于β
1
,β
2
,…,β
s
由线性无关向量组α
1
,α
2
,…,α
s
线性表示的系数矩阵为s阶方阵 [*] 故β
1
,β
2
,…,β
s
线性无关[*]|P|=t
1
s
+(-1)
1-s
t
2
a
≠0,即当t
1
,t
2
满足t
1
a
+(-1)
1+s
t
2
a
≠0(s为偶数时,t
1
≠±t
2
;s为奇数时,t
1
≠-t
2
)时,β
1
,β
2
,…,β
s
也是Ax=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/02j4777K
0
考研数学二
相关试题推荐
设非齐次线性方程组有三个线性无关解α1,α2,α3,(Ⅰ)证明系数矩阵的秩r(A)=2;(Ⅱ)求常数a,b及通解.
设抛物线y=χ2与它的两条相互垂直的切线所围成的平面图形的面积为S,其中一条切线与抛物线相切于点A((a,a2)(a>0).(1)求S=S(a)的表达式;(Ⅱ)当a取何值时,面积S(a)最小?
设A为m×n矩阵,且r(A)=m<n,则下列结论正确的是().
设矩阵A=且A3=0(I)求a的值; (Ⅱ)若矩阵X满足X—XA2一AX+AXA2=E,其中E为3阶单位矩阵,求X.
证明:若矩阵A可逆,则其逆矩阵必然唯一.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组Ax=0的通解.
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则().
设二阶常系数非齐次线性微分方程y"+y’+qy=Q(x)有特解y=3e-4+x2+3x+2,则Q(x)=_______,该微分方程的通解为_______.
随机试题
柴胡的原植物有
已知某光纤的相对折射指数为0.22,纤芯折射指数n1为0.8,求包层折射指数n2。
Generallyspeaking,allkindsofmaterialswillexpandwhenheatedbutwill______whencooled.
女,45岁,G4P2。月经规律,白带增多半年,性交后阴道流血2个月。近3年未体检。妇科检查发现宫颈重度糜烂状,接触性出血(+),子宫附件未见明显异常。宫颈活检组织病理报告为宫颈鳞状细胞癌,浸润深度为7mm。如术后组甜J病理学证实右侧髂外淋巴结转移,最恰
尿毒症病人血肌酐明显增高,近一周来夜间尿量增多,晨起时恶心、呕吐。为减轻晨间呕吐,最有效的护理措施是
某水泥厂因超标排放污染物,被当地环保局处以罚款,于2007年4月10日接到处罚通知书。如水泥厂不服,可在()前提起行政复议。
货币主义认为,扩张的财政政策如果没有相应的货币政策配合,就会产生()。
骨中的有机物主要是(),无机物主要是()。
下列选项中,加下划线词语的使用不恰当的一项是()。
A、 B、 C、 D、 C整数部分构成平方数列:100,(81),64,49,36。分数简化得3/4,(),4/3,16/9,64/27。分数可看成(4/3)-1,(4/3)0,(4/
最新回复
(
0
)