首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型f=xTAx的秩为2,且求此二次型的表达式,并求正交变换x=Qy化二次型为标准形。
已知三元二次型f=xTAx的秩为2,且求此二次型的表达式,并求正交变换x=Qy化二次型为标准形。
admin
2017-01-21
71
问题
已知三元二次型f=x
T
Ax的秩为2,且
求此二次型的表达式,并求正交变换x=Qy化二次型为标准形。
选项
答案
二次型x
T
Ax的秩为2,即r(A)=2,所以λ=0是A的特征值。 [*] 所以3是A的特征值,(1,2,1)
T
是与3对应的特征向量;—1也是A的特征值,(1,—1,1)
T
是与—1对应的特征向量。 因为实对称矩阵不同特征值的特征向量相互正交,设λ=0的特征向量是(x
1
,x
2
,x
3
)
T
,则有(x
1
,x
2
,x
3
)[*]=0,(x
1
,x
2
,x
3
)[*] 由方程组 [*] 解出λ=0的特征向量是(1,0,—1)
T
。 [*] 因此 x
T
Ax=[*](x
1
2
+ 10x
2
2
+ x
3
2
+ 16x
1
x
2
+ 2x
1
x
3
+ 16x
2
x
3
) 令[*] 则经正交变换x=Qy,有x
T
Ax=y
T
Ay=3y
1
2
—y
3
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/09H4777K
0
考研数学三
相关试题推荐
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值A的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是
设向量组α1,α2,…,αs线性无关,作线性组合β1=α1+μ1αs,β2=α2+μ2αs,…,βs-1=αs-1+μs-1αs,则向量组β1,β2,…,βs-1线性无关,其中s≥2,μi为任意实数.
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵,若交换A的第一行与第二行得到矩阵B,则|BA*|=_________.
设f(x)在[0,1]上二阶可导且f〞(x)<0,证明:
设A,B皆为n阶矩阵,则下列结论正确的是().
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=O和(Ⅱ)ATAX=0必有().
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
设B=(β1,β2,β3),其βi(i=1,2,3)为三维列向量,由于B≠0,所以至少有一个非零的列向量,不妨设β1≠0,由于AB=A(β1,β1,β3)=(Aβ1,Aβ2,Aβ3)=0,→Aβ1=0,即β1为齐次线性方程组AX=0的非零解,于是系数矩阵的
随机试题
能产生LTA的细菌是
管电压在摄影条件选择中的意义,错误的是
保管特殊类型药材必须具有
在公共场所附近开挖沟槽时,应设防护设施,夜间设置照明灯和警示红灯。()
在某些情况下,被保险人患病或遭受意外伤害,最终是否残疾在短期内难以判定,为此保险公司规定一个定残期限,过了该期限后仍无明显好转征兆的,认定为全残。这种情况称为( )。
立面图的绘制中整个建筑的外轮廓尺寸线用( )线绘制。
信用风险管理委员会或类似机构可以考虑重新设定/调整限额的情况有()。
饮水时,应注意遵循少次多量的原则。
把对集体与个人的管理结合起来的班级管理是()。
A、Thecablecarride.B、GoldenGatePark.C、Fisherman’sWharf.D、Busesandstreetcars.A男士问女士最喜欢旧金山的什么,女士回答:“我也不知道,这很难说。我喜欢金门大桥
最新回复
(
0
)