首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型f=xTAx的秩为2,且求此二次型的表达式,并求正交变换x=Qy化二次型为标准形。
已知三元二次型f=xTAx的秩为2,且求此二次型的表达式,并求正交变换x=Qy化二次型为标准形。
admin
2017-01-21
91
问题
已知三元二次型f=x
T
Ax的秩为2,且
求此二次型的表达式,并求正交变换x=Qy化二次型为标准形。
选项
答案
二次型x
T
Ax的秩为2,即r(A)=2,所以λ=0是A的特征值。 [*] 所以3是A的特征值,(1,2,1)
T
是与3对应的特征向量;—1也是A的特征值,(1,—1,1)
T
是与—1对应的特征向量。 因为实对称矩阵不同特征值的特征向量相互正交,设λ=0的特征向量是(x
1
,x
2
,x
3
)
T
,则有(x
1
,x
2
,x
3
)[*]=0,(x
1
,x
2
,x
3
)[*] 由方程组 [*] 解出λ=0的特征向量是(1,0,—1)
T
。 [*] 因此 x
T
Ax=[*](x
1
2
+ 10x
2
2
+ x
3
2
+ 16x
1
x
2
+ 2x
1
x
3
+ 16x
2
x
3
) 令[*] 则经正交变换x=Qy,有x
T
Ax=y
T
Ay=3y
1
2
—y
3
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/09H4777K
0
考研数学三
相关试题推荐
A是n阶矩阵,且A3=0,则().
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
当k=________时,向量β=(1,k,5)能由向量α1=(1,-3,2),α2=(2,-1,1)线性表示.
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α23,α3
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有
已知二次型f(x1,x2,x3)=x12+5x22+x32+2x1x2+2ax2x3为正定二次型,则a的取值范围________.
二次型f(x1,x2,x3)=x12+4x22+3x32-4x1x2+2x1x3+8x2x3的秩等于()。
设n元线性方程组Ax=b,其中,x=(x1,…,xn)T,b=(1,0,…,0)T.(I)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是().
设A是n阶矩阵,下列不是命题“0是矩阵A的特征值”的充分必要条件的是().
随机试题
鼓室内有哪些重要结构及作用?
人民检察院在我国的性质是()
《前赤壁赋》中,作者借以抒情说理的主要景物是江水、清风、白露。()
一度房室传导阻滞的诊断标准是()
A.可形成寒性脓肿B.可随伸舌上下移动C.原发性淋巴结的恶性肿瘤D.可分泌5-羟色胺和降钙素E.常继发于面部的炎症病变甲状舌管囊肿
不会造成局部义齿摘戴困难的是
政府直接投资的项目在实施中应特别强调实行()。
对于保修义务的承担和维修的经济责任承担,下述说法正确的是()。
在我国,特别行政区可实行与我国内地不同的社会经济、政治和文化制度。()
Notsolongago,itwasthestuffofnightmares:youpickupthelandlinetelephoneandthere’snodialingtone.Nothing.Theph
最新回复
(
0
)