利用变换y=f(ex)求微分方程y’’-(2ex+1)y’+e2xy=e3x的通解.

admin2021-11-15  0

问题 利用变换y=f(ex)求微分方程y’’-(2ex+1)y’+e2xy=e3x的通解.

选项

答案令t=ex,y=f(t)[*]y’=f’(t).ex=tf’(t), y’’=[tf’(t)]’x=exf’(t)+tf’’(t).ex=tf’(t)+t2f’’(t),代入方程得t2f’’(t)+tf’(t)-(2t+1)tf’(t)+t2f(t)=t3,即f’’(t)-2f’(t)+f(t)=t. 解得f(t)=(C+C2t)et+t+2,所以y’’-(2ex+1)y’+e2xy=e3x的通解为 y=(C1+C2ex)[*]+ex+2,其中C1,C2为任意常数.

解析
转载请注明原文地址:https://kaotiyun.com/show/0Jl4777K
0

最新回复(0)