首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是s×n矩阵,B是A的前m行构成的m×n矩阵,已知A的行向量组的秩为r.证明: r(B)≥r+m-s.
设A是s×n矩阵,B是A的前m行构成的m×n矩阵,已知A的行向量组的秩为r.证明: r(B)≥r+m-s.
admin
2016-09-19
53
问题
设A是s×n矩阵,B是A的前m行构成的m×n矩阵,已知A的行向量组的秩为r.证明:
r(B)≥r+m-s.
选项
答案
因(A的行向量的个数s)-(A的线性无关行向量的个数r(A))≥(B的行向量个数m)-(B的线性无关的行向量的个数r(B)), 即 s-r(A)≥m-r(B), 得 r(B)≥r(A)+m-s=r+m-s.
解析
转载请注明原文地址:https://kaotiyun.com/show/0VT4777K
0
考研数学三
相关试题推荐
[*]
一个袋子中装有5个红球,3个白球,2个黑球,从中任取3个球,求其中恰有一个红球、一个白球和一个黑球的概率.
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:(1)|x-a|20与x≤20;(3)x>20与x20与x≤22;(5)“20件产品全是合格品”与“20件产品中恰有一件是废品”;(6)“20件产品全是合
设A,B是同阶正定矩阵,则下列命题错误的是().
已知向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5.如果各向量组的秩分别为r(Ⅰ)=r(Ⅱ)=3,r(Ⅲ)=4,证明:向量组α1,α2,α3,α5-α4的秩为4.
(1)微分方程的阶数是指__________.(2)n阶微分方程的初值条件的一般形式为______________.(3)函数y1(x)与y2(x)在区间I上线性无关的充要条件是___________.(4)函数y=eλx是常系数线性微分方程yn+P
下列函数在哪些点处间断,说明这些间断点的类型,如果是可去间断点,则补充定义或重新定义函数在该点的值而使之连续:
设矩阵已知线性方程组AX=β有解但不唯一,试求(I)a的值;(Ⅱ)正交矩阵Q,使QTAQ为对角矩阵.
甲袋中有4个红球2个白球,乙袋中有2个红球.设从袋中取球时各球被取到的可能性相等.今从甲袋中任取一球放人乙袋中,再从乙袋中任取一球,则从乙袋中取到的球是白球的概率为_____.
随机试题
背景:南方某6层砖混结构的住宅楼,基础为钢筋混凝土条形基础,建设单位委托A监理公司监理,经过招标投标,B建筑工程有限公司中标,并成立了项目部组织施工。项目部计划混凝土及砂浆采用现场搅拌。该工程计划于2012年1月8日开工,2013年1月28日工程整体竣工
简述我国宪法为司法审查制度的建立提供的宪法依据。
专家教师的课时计划简洁、灵活,以学生为中心并具有()。
编制招标控制价时,下列关于综合单价的风险确定方法,正确的是()。
Y=f(x1,x2,…,xk;β0,β1,…,βk)+μ表示()。
下列关于管制的描述,不正确的是()(2018年非法学基础课单选第7题)
在马克思主义哲学产生以前不曾存在()。
经济基础与上层建筑的区别是()。
已知线性非齐次方程组A3×4=b(*)有通解k1(1,2,0,一2)T+k2(4,一1,一1,一1)T+(1,0,一1,1)T,其中k1,k2是任意常数,则满足条件x1=x2,x3=x4的解是()
无线局域网的设计包括:对必要的变化进行初步调查、对现有网络环境进行分析、()、()、()和创建必要的设计文档。
最新回复
(
0
)