首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的秩为2,又6是它的二重特征值,向量α1=(1,1,0)T和α2=(2.1,1)T和α3=(-1,2,-3)T都是属于6的特征向量. (1)求A的另一个特征值与相应的特征向量. (2)求A.
设3阶实对称矩阵A的秩为2,又6是它的二重特征值,向量α1=(1,1,0)T和α2=(2.1,1)T和α3=(-1,2,-3)T都是属于6的特征向量. (1)求A的另一个特征值与相应的特征向量. (2)求A.
admin
2016-10-21
67
问题
设3阶实对称矩阵A的秩为2,又6是它的二重特征值,向量α
1
=(1,1,0)
T
和α
2
=(2.1,1)
T
和α
3
=(-1,2,-3)
T
都是属于6的特征向量.
(1)求A的另一个特征值与相应的特征向量.
(2)求A.
选项
答案
(1)由于r(A)=2,A不可逆,故0是A的另一个特征值.相应的特征向量应与α
1
,α
2
,α
3
都正交,即满足方程组 [*] 求出它的基础解系α=(1,-1,-1)
T
.于是,A的以0为特征值的特征向量为cα(c≠0). (2)看出α
1
,α
2
线性无关,于是(α
1
,α
2
,α)是可逆矩阵,且A(α
1
,α
2
,α)=(6α
1
,6α
2
,0),解此矩阵方程 ((α
1
,α
2
,α)
T
|(6α
1
,6α
2
,0)
T
)=[*] 得A=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/0Xt4777K
0
考研数学二
相关试题推荐
设某产品的需求函数为Q=Q(P),收益函数为R=PQ,其中P为产品价格,Q为需求量(产品的产量),Q(P)是单调减函数.如果当价格为P0时,对应产量为Q0时,边际收益,需求对价格的弹性为Ep=b>1,求P0和Q0.
求下列的不定积分。∫(x-2)2dx
设0<a1<π,an+1=sinan(n=1,2,…).证明:存在,并求此极限;
计算二重积分,其中D是由直线y=x,y=1,x=0所围成的平面区域。
设函数f(x)、g(x)满足条件:f’(x)=g(x),g’(x)=f(x).又f(0)=0,g(x)≠0,试求由曲线与x=0,x=t(t>0),y=1所围成的平面图形的面积。
求微分方程ylnydx+(x-lny)dy=0的通解。
设A,B为同阶可逆矩阵,则().
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求A的属于特征值3的特征向量.
[*]由于Aα与α线性相关,则存在数k≠0使Aα=kα,即a=ka,2a+3=k,3a+4=k三式同时成立.解此关于a,k的方程组可得a=-1,k=1.
从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y(从海平面算起)与下沉速度v之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用,设仪器的质量为m,体积为B,海水比重为ρ,仪器所受的阻力与下沉速
随机试题
司马光编写的编年体的通史巨著是()
广域网通信中,________不是包交换机的任务。
某患者,男,9岁,突发高热、头痛、呕吐、腹泻3天,烦躁不安1天入院。查体:体温39.6℃,血压95/60mmHg,精神萎靡,瞳孔等大等圆,对光反射灵敏,颈有抵抗感,胸腹可见散在出血点,克匿格征阳性,Brudzinski征阴性,巴彬斯基征阴性。血象:白细胞1
应用TAT治疗破伤风的机制是
冬期施工的水泥混凝土面板,弯拉强度和抗压强度分别低于()时,严禁受冻。
1915年,中国人民兴起了抵制日货、提倡国货的运动。其直接原因是()。
到图书馆、书店走走,到街头的报刊亭看看,每次都感到纸页文字对生命的一种__________。几年前还在热心地讨论“读书有没有禁区”的问题,我是__________对文化人不应有禁区的,但现在却出现了一种意想不到的无奈:必须__________禁区,否则将是
Congratulations祝贺Writeane-mailofabout100wordsbasedonthefollowingsituation:YourfriendBarbaraisgraduatingfromY
Ifincomeistransferredfromrichpersonstopoorpersonstheproportioninwhichdifferentsortsofgoodsandservicesarepro
Forshopaholics,thepost-【T1】______periodmeansonlyonething:sales.Acrossthecountry,pricesareslashonclothing,【T2】__
最新回复
(
0
)