首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X1,X2,X3相互独立且都服从参数为P的0-1分布,已知矩阵 为正定矩阵的概率为.试求: 随机变量 的分布律.
设随机变量X1,X2,X3相互独立且都服从参数为P的0-1分布,已知矩阵 为正定矩阵的概率为.试求: 随机变量 的分布律.
admin
2017-06-12
66
问题
设随机变量X
1
,X
2
,X
3
相互独立且都服从参数为P的0-1分布,已知矩阵
为正定矩阵的概率为
.试求:
随机变量
的分布律.
选项
答案
Y=X
1
X
3
-X
2
2
的所有取值为-1,0,1, P{Y=-1}=P{X
1
=1,X
2
=1,X
3
=0}+P{X
1
=0,X
2
=1,X
3
=1}+P{X
1
= 0,X
2
=1,X
3
=0)=[*] P{Y=0}=P{X
1
=0,X
2
=0,X
3
=0}+P{X
1
=1,X
2
=1,X
3
=1}+P{X
1
=0, X
2
=0,X
3
=1}+P{x
1
=1,X
2
=0,X
3
=0}=[*]. P{Y=1}=P{X
1
=1,X
2
=0,X
3
=1}=[*] 所以,Y的分布律为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/0au4777K
0
考研数学一
相关试题推荐
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B):②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(
已知非齐次线性方程组有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.A2;
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设A,B为满足AB=0的任意两个非零矩阵,则必有
设向最组α1,α2,…,αs线性无关,则下列向量组线性相关的是
设两个随机变量X与Y独立同分布,P{X=-1}=P{Y=-1}=1/2,P{X=1}=P{Y=1}=1/2,则下列各式中成立的是().
由题设,需先求出f(x)的解析表达式,再求不定积分.[*]
某地抽样调查结果表明,考生的外语成绩(百分制)近似正态分布,平均成绩为72分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分到84分之间的概率,如下表:
某工厂每天分3个班生产,事件Ai表示第i班超额完成生产任务(i=1,2,3),则至少有两个班超额完成任务的事件可以表示为().
随机试题
在通道面板上按住什么功能键可以加选或减选:
已经达到报废标准的机动车经大修后可以上路行驶。
患者男性,58岁,胃纳不适伴早饱感半年,上腹隐痛3个月。1周前解成形黑便2次,外观胃肠道钡餐检查示胃体中部大弯侧见0.7cm龛影,边缘稍呈锯齿状,疑为胃癌。为进一步明确,首选的检查是
下列哪项不是二尖瓣狭窄的体征
A.二尖瓣狭窄B.主动脉瓣狭窄C.二尖瓣关闭不全D.主动脉瓣关闭不全E.三尖瓣狭窄脉压增大见于
下列症状中哪一项属湿热泄泻
进口应税消费品组成计税价格的计算公式为( )。
下列各项中,增值税的进项税额需要转出的有()。
世界上最早颁布义务教育法的国家是()
安土城、大阪城和()为日本三个古城堡。
最新回复
(
0
)