首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求功: (Ⅰ)设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,问要做多少功? (Ⅱ)半径为尺的半球形水池,其中充满了水,要把池内的水全部取尽需做多少功?
求功: (Ⅰ)设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,问要做多少功? (Ⅱ)半径为尺的半球形水池,其中充满了水,要把池内的水全部取尽需做多少功?
admin
2018-06-27
57
问题
求功:
(Ⅰ)设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,问要做多少功?
(Ⅱ)半径为尺的半球形水池,其中充满了水,要把池内的水全部取尽需做多少功?
选项
答案
(Ⅰ)(微元法).以球心为原点,x轴垂直向上,建立坐标系(如图3.5). [*]取下半球中的微元薄片,即[*]取小区间[x,x+dx][*][-1,0],相应的球体小薄片,其重量(即体积)为π(1-x
2
)dx,在水中浮力与重力相符,当球从水中移出时,此薄片移动距离为(1+x),故需做功dw
1
=(1+x)π(1-x
2
)dx.因此,对下半球做的功 w
1
=∫
-1
0
π(1+x)(1-x
2
)dx. [*]取上半球中的微元薄片,即V取小区间[x,x+dx][*][0,1],相应的小薄片,其重量为π(1-x
2
)dx,当球从水中移出时,此薄片移动距离为1.所受力为重力,故需做功dw
2
=π(1-x
2
)dx.因此,对上半球做的功 w
2
=∫
0
1
π(1-x
2
)dx. 于是,对整个球做的功为 w=w
1
+w
2
=∫
-1
0
π(1+x)(1-x
2
)dx+∫
0
1
π(1-x
2
)dx =∫
-1
1
π(1-x
2
)dx+∫
-1
0
πx(1-x
2
)dx [*] (Ⅱ)建立坐标系如图3.6.取x为积分变量,x∈[0,R]. [*][x,x+dx]相应的水薄层,看成圆柱体,其体积为 π(R
2
-x
2
)dx, 又比重ρ=1,于是把这层水抽出需做功dw=πx(R
2
-x
2
)dx.因此,所求的功 w=∫
0
R
πx(R
2
-x
2
)dx [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/0pk4777K
0
考研数学二
相关试题推荐
设则()
设f(x)在x=x0的某邻域内有定义,则存在且等于A”是“f’(x0)存在且等于A”的()
设u=f(xy)满足求u=f(xy),其中F(t)=1当t≠0时有二阶连续导数.
设f(x)满足求y=f(x)的渐近线方程.
曲线的切线与x轴和y轴围成一个图形,记切点的横坐标为a.试求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
设A为三阶矩阵,α1,α2,α3;是线性无关的三维列向量,且满足Aα1=α1,α2,α3;,Aα2=2α2+α3,Aα3=2α2+3α3.求矩阵B,使得A(α1,α2,α3;)=(α1,α2,α3)B;
设函数,若反常积分收敛,则
定积分取值
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
随机试题
关于苯氧乙酸类降血酯药的构效关系描述不准确的是
下列以划拨方式取得土地使用权期限的表述中,何者是正确的?(2011年第17题)
合金钢条(含碳0.6%、锰1.5%、硅2.0%)
在我国刑事诉讼中,依法无权行使刑事侦查权的是()。
以下有关外汇“期权宝”的说法中正确的是( )。
下列各项中,不会引起无形资产账面价值发生增减变动的有()。
农机产业的快速发展为农机化水平的稳定提升提供了装备(),但目前农机产品的有效供给远不能满足发展现代农业对其的()。
不属于幼儿园教师工作主要职责的是()
二十四节气反映了我国的自然地理环境特征,下列说法正确的是()。
道德修养是一个循序渐进的过程,古人云:“积土成山,风雨兴焉;积水成渊,蛟龙生焉;积善成德,而神明自得,圣心备焉。故不积跬步,无以至千里;不积小流,无以成江海。”下列名言中与这段话在含义上近似的是()
最新回复
(
0
)