首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,(E+A)x=0只有零解,则下列矩阵间乘法不能交换的是( )
设A是n阶矩阵,(E+A)x=0只有零解,则下列矩阵间乘法不能交换的是( )
admin
2014-04-16
46
问题
设A是n阶矩阵,(E+A)x=0只有零解,则下列矩阵间乘法不能交换的是( )
选项
A、A—E;A+E.
B、A-E;(A+E)
-1
.
C、A—E;(A+E)
*
.
D、A—E;(A+E)
T
.
答案
D
解析
法一 因(A+E)(A一E)=A
2
一E=(A—E)(A+E),(*)故A+E,A—E左、右可交换,故A成立.(*)式左、右两边各乘(A+E)
-1
,得(A—E)(A+E)
-1
=(A+E)
-1
(A—E),(**)故(A+E)
-1
,A—E可交换,故B成立.(**)式两边乘|A+E|(数),得(A—E)(A+E)
*
=(A+E)
*
(A—E),故(A+E)
*
,A—E可交换.故C成立.由排除法,知应选D,即(A+E)
T
,A—E不能交换.
法二 (A+E)(A—E)=(A+E)(A+E一2E)=(A+E)
2
一2(A+E)=(A+E一2E)(A+E)=(A—E)(A+E).同理(A+E)
-1
(A—E)=(A+E)
-1
(A+E一2E)=(A+E)
-1
(A+E)一2(A+E)
-1
=(A+E)(A+E)
-1
一2(A+E)
-1
=(A+E一2E)(A+E)
-1
=(A—E)(A+E)
-1
.同理(A+E)
*
(A—E)=(A—E)(A+E)
*
.故应选D.
法三 D不成立,因A
T
A≠AA
T
,或举出反例,如取
而
故(A+E)
T
(A一E)≠(A—E)(A+E)
T
,即D不成立.
转载请注明原文地址:https://kaotiyun.com/show/oX34777K
0
考研数学二
相关试题推荐
(1998年)设周期函数f(x)在(一∞,+∞)内可导,周期为4,又,则曲线y=f(x)在点(5,f(5))处的切线斜率为()
设A,B均为2阶矩阵,A*,B*分别为A,B的伴随矩阵.若∣A∣=2,∣B∣=3,则分块矩阵的伴随矩阵为【】
设A、B为同阶可逆矩阵,则【】
(03年)设三阶矩阵A=,若A的伴随矩阵的秩等于1,则必有【】
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值,又f(a)=g(a),b(b)=g(b),证明:(I)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f"(ξ)=g"(ξ)。
设f(x)二阶可导,f(x)/x=1,且f(1)=1,证明:存在ξ∈(0,1),使得f"(ξ)一2f’(ξ)=-2。
设f(x)连续,且f(1)=0,f’(1)=2,求极限。
设f(x)连续,且f(0)=0,f’(0)=2,求极限。
随机试题
A.麻风病B.狂犬病C.风疹D.鼠疫E.流行性腮腺炎上述各项,属于乙类传染病的是()
会计核算软件主要是替代了手工会计的()等工作。
下列商业银行的理财顾问服务流程的环节中,顺序存“建立投资组合”之后的是()
房地产开发企业计算土地增值税时,所销售的房产对应的下列费用中,准予按照实际发生额从收入总额中扣除的有()。
在签署审计业务约定书前,会计师事务所应当评价自身的专业胜任能力,包括( )。在签署审计业务约定书之前,注册会计师应当对被审计单位的基本情况进行了解,其内容包括( )。
儿歌是以低幼儿童为主要对象的文学作品,试简述儿歌的特点。
3岁孩子拿着画笔认真画画时,不仅是手动,身体的动作、面部的动作也来帮忙。这体现了儿童动作发展的()。
在关系数据库中,用来表示实体间联系的是
Agoodbookmaydrawourattentionsocompletelythatweforgetoursurroundingsandevenouridentityforthetimebeing.
A、 B、 C、 A叙述将来的事情的陈述句→将来时态的否定回答
最新回复
(
0
)