首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为( ).
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为( ).
admin
2019-09-04
123
问题
设三阶常系数齐次线性微分方程有特解y
1
=e
x
,y
2
=2xe
x
,y
3
=3e
-x
,则该微分方程为( ).
选项
A、y’’’-y’’-y’+y=0
B、y’’’+y’’-y’-y=0
C、y’’’+2y’’-y’-2y=0
D、y’’’-2y’’-y’+2y=0
答案
A
解析
由y
1
=e
x
,y
2
=2xe
x
,y
3
=3e
-x
为三阶常系数齐次线性微分方程的特解可得其特征值为λ
1
=λ
2
=1,λ
3
=-1,其特征方程为(λ-1)
2
(λ+1)=0,即λ
3
-λ
2
-λ+1=0,所求的微分方程为y’’’-y’’-y’y=0,选A.
转载请注明原文地址:https://kaotiyun.com/show/0zD4777K
0
考研数学三
相关试题推荐
求(y3一3xy2一3x2y)dx+(3xy2一3x2y—x3+y2)dy=0的通解.
求微分方程的通解,并求满足y(1)=0的特解.
设有方程y’+P(x)y=x2,其中P(x)=试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
设A为n阶实矩阵,则对线性方程组(I)AX=0和(Ⅱ)ATAX=0,必有()
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
设四元齐次线性方程组(I)又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[一1,2,2,1]T.(1)求线性方程组(I)的基础解系;(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没
设随机变量X的概率密度为f(x),已知方差DX=1,而随机变量Y的概率密度为f(一y),且X与Y的相关系数为,记Z=X+Y,求:(1)EZ,DZ;(2)用切比雪夫不等式估计P{|Z|≥2}.
微分方程(x>0)满足y(1)=0的特解是()
求曲线y=cosx()与x轴围成的区域绕x轴、y轴形成的几何体体积.
设f(x)和φ(x)在(一∞,+∞)内有定义,f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则
随机试题
Itwasasummerevening.Iwassittingbytheopenwindow,readinga【C1】________Suddenly,Iheardsomeonecrying,"Help!Help!
用于控制疟疾症状的最佳抗疟药是
最可能的诊断是假如CT检查发现患者为脑叶出血,血肿超过40ml,患者颅压增高症状明显加重,处于浅昏迷状态,应首选下列何项措施
A.左下6B.右上5C.右上1D.右上ⅣE.左上Ⅲ左上乳尖牙
患者,女,35岁。月经周期正常,惟月经量少、色红、质稠,经期鼻衄,量不多,色暗红,伴手足心热,潮热颧红,舌红少苔,脉细数。其证候是
资产组合M的期望收益率为18%,标准离差为27.9%;资产组合N的期望收益率为13%,标准离差率为1.2。投资者张某和赵某决定将其个人资金投资于资产组合M和N中,张某期望的最低收益率为16%,赵某投资于资产组合M和N的资金比例分别为30%和70%。
建设工程的屋面防水工程、有防水要求的卫生间、房间和外墙面的防渗漏,最低保修期限为()年。
8,17,24,37,()
《民法典》规定:“物权的种类和内容,由法律规定。”对此,下列说法中正确的是()
Thatshewas(i)_____rockclimbingdidnotdiminishher(ii)_____tojoinherfriendsonarock-climbingexpedition.
最新回复
(
0
)